mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			524 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			524 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Paul A. Bristow 2012.
 | |
| // Copyright John Maddock 2012.
 | |
| // Copyright Benjamin Sobotta 2012
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4127) // conditional expression is constant.
 | |
| #  pragma warning (disable : 4305) // 'initializing' : truncation from 'double' to 'const float'.
 | |
| #  pragma warning (disable : 4310) // cast truncates constant value.
 | |
| #  pragma warning (disable : 4512) // assignment operator could not be generated.
 | |
| #endif
 | |
| 
 | |
| //#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.
 | |
| 
 | |
| #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp> // Boost.Test
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| 
 | |
| #include <boost/math/distributions/skew_normal.hpp>
 | |
| using boost::math::skew_normal_distribution;
 | |
| using boost::math::skew_normal;
 | |
| #include <boost/math/tools/test.hpp> 
 | |
| 
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| using std::cout;
 | |
| using std::endl;
 | |
| using std::setprecision;
 | |
| #include <limits>
 | |
| using std::numeric_limits;
 | |
| #include "test_out_of_range.hpp"
 | |
| 
 | |
| template <class RealType>
 | |
| void check_skew_normal(RealType mean, RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
 | |
| {
 | |
|  using boost::math::skew_normal_distribution;
 | |
| 
 | |
|   BOOST_CHECK_CLOSE_FRACTION(
 | |
|     ::boost::math::cdf(   // Check cdf
 | |
|     skew_normal_distribution<RealType>(mean, scale, shape),      // distribution.
 | |
|     x),    // random variable.
 | |
|     p,     // probability.
 | |
|     tol);   // tolerance.
 | |
|   BOOST_CHECK_CLOSE_FRACTION(
 | |
|     ::boost::math::cdf( // Check cdf complement
 | |
|     complement( 
 | |
|     skew_normal_distribution<RealType>(mean, scale, shape),   // distribution.
 | |
|     x)),   // random variable.
 | |
|     q,      // probability complement.
 | |
|     tol);    // %tolerance.
 | |
|   BOOST_CHECK_CLOSE_FRACTION(
 | |
|     ::boost::math::quantile( // Check quantile
 | |
|     skew_normal_distribution<RealType>(mean, scale, shape),    // distribution.
 | |
|     p),   // probability.
 | |
|     x,   // random variable.
 | |
|     tol);   // tolerance.
 | |
|   BOOST_CHECK_CLOSE_FRACTION(
 | |
|     ::boost::math::quantile( // Check quantile complement
 | |
|     complement(
 | |
|     skew_normal_distribution<RealType>(mean, scale, shape),   // distribution.
 | |
|     q)),   // probability complement.
 | |
|     x,     // random variable.
 | |
|     tol);  // tolerance.
 | |
| 
 | |
|    skew_normal_distribution<RealType> dist (mean, scale, shape);
 | |
| 
 | |
|    if((p < 0.999) && (q < 0.999))
 | |
|    {  // We can only check this if P is not too close to 1,
 | |
|       // so that we can guarantee Q is accurate:
 | |
|       BOOST_CHECK_CLOSE_FRACTION(
 | |
|         cdf(complement(dist, x)), q, tol); // 1 - cdf
 | |
|       BOOST_CHECK_CLOSE_FRACTION(
 | |
|         quantile(dist, p), x, tol); // quantile(cdf) = x
 | |
|       BOOST_CHECK_CLOSE_FRACTION(
 | |
|         quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x
 | |
|    }
 | |
| } // template <class RealType>void check_skew_normal()
 | |
| 
 | |
| 
 | |
| template <class RealType>
 | |
| void test_spots(RealType)
 | |
| {
 | |
|    // Basic sanity checks
 | |
|    RealType tolerance = 1e-4f; // 1e-4 (as %)
 | |
| 
 | |
|   // Check some bad parameters to the distribution,
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd
 | |
| #else
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(0, 0), std::domain_error); // zero sd
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(0, -1), std::domain_error); // negative sd
 | |
| #endif
 | |
|   // Tests on extreme values of random variate x, if has numeric_limit infinity etc.
 | |
|     skew_normal_distribution<RealType> N01;
 | |
|   if(std::numeric_limits<RealType>::has_infinity)
 | |
|   {
 | |
|     BOOST_CHECK_EQUAL(pdf(N01, +std::numeric_limits<RealType>::infinity()), 0); // x = + infinity, pdf = 0
 | |
|     BOOST_CHECK_EQUAL(pdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, pdf = 0
 | |
|     BOOST_CHECK_EQUAL(cdf(N01, +std::numeric_limits<RealType>::infinity()), 1); // x = + infinity, cdf = 1
 | |
|     BOOST_CHECK_EQUAL(cdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, cdf = 0
 | |
|     BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0
 | |
|     BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
 | |
| #else
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (std::numeric_limits<RealType>::has_quiet_NaN)
 | |
|   {
 | |
|     // No longer allow x to be NaN, then these tests should throw.
 | |
|     BOOST_MATH_CHECK_THROW(pdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
 | |
|     BOOST_MATH_CHECK_THROW(cdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
 | |
|     BOOST_MATH_CHECK_THROW(cdf(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity
 | |
|     BOOST_MATH_CHECK_THROW(quantile(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity
 | |
|     BOOST_MATH_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity
 | |
|   }
 | |
| 
 | |
|    cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;
 | |
| 
 | |
|    // Tests where shape = 0, so same as normal tests.
 | |
|    // (These might be removed later).
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(2),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(4.8),
 | |
|       static_cast<RealType>(0.46017),
 | |
|       static_cast<RealType>(1 - 0.46017),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(2),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(5.2),
 | |
|       static_cast<RealType>(1 - 0.46017),
 | |
|       static_cast<RealType>(0.46017),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(2),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(2.2),
 | |
|       static_cast<RealType>(0.08076),
 | |
|       static_cast<RealType>(1 - 0.08076),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(2),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(7.8),
 | |
|       static_cast<RealType>(1 - 0.08076),
 | |
|       static_cast<RealType>(0.08076),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(-3),
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(-4.5),
 | |
|       static_cast<RealType>(0.38209),
 | |
|       static_cast<RealType>(1 - 0.38209),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(-3),
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(-1.5),
 | |
|       static_cast<RealType>(1 - 0.38209),
 | |
|       static_cast<RealType>(0.38209),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(-3),
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(-8.5),
 | |
|       static_cast<RealType>(0.13567),
 | |
|       static_cast<RealType>(1 - 0.13567),
 | |
|       tolerance);
 | |
| 
 | |
|    check_skew_normal(
 | |
|       static_cast<RealType>(-3),
 | |
|       static_cast<RealType>(5),
 | |
|       static_cast<RealType>(0),
 | |
|       static_cast<RealType>(2.5),
 | |
|       static_cast<RealType>(1 - 0.13567),
 | |
|       static_cast<RealType>(0.13567),
 | |
|       tolerance);
 | |
| 
 | |
|    // Tests where shape != 0, specific to skew_normal distribution.
 | |
|    //void check_skew_normal(RealType mean, RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
 | |
|       check_skew_normal( // 1st R example.
 | |
|       static_cast<RealType>(1.1),
 | |
|       static_cast<RealType>(2.2),
 | |
|       static_cast<RealType>(-3.3),
 | |
|       static_cast<RealType>(0.4), // x
 | |
|       static_cast<RealType>(0.733918618927874), // p == psn
 | |
|       static_cast<RealType>(1 - 0.733918618927874), // q 
 | |
|       tolerance);
 | |
| 
 | |
|    // Not sure about these yet.
 | |
|       //check_skew_normal( // 2nd R example.
 | |
|       //static_cast<RealType>(1.1),
 | |
|       //static_cast<RealType>(0.02),
 | |
|       //static_cast<RealType>(0.03),
 | |
|       //static_cast<RealType>(1.3), // x
 | |
|       //static_cast<RealType>(0.01), // p
 | |
|       //static_cast<RealType>(0.09), // q
 | |
|       //tolerance);
 | |
|       //check_skew_normal( // 3nd R example.
 | |
|       //static_cast<RealType>(10.1),
 | |
|       //static_cast<RealType>(5.),
 | |
|       //static_cast<RealType>(-0.03),
 | |
|       //static_cast<RealType>(-1.3), // x
 | |
|       //static_cast<RealType>(0.01201290665838824), // p
 | |
|       //static_cast<RealType>(1. - 0.01201290665838824), // q 0.987987101
 | |
|       //tolerance);
 | |
| 
 | |
|     // Tests for PDF: we know that the normal peak value is at 1/sqrt(2*pi)
 | |
|    //
 | |
|    tolerance = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction
 | |
|    BOOST_CHECK_CLOSE_FRACTION(
 | |
|       pdf(skew_normal_distribution<RealType>(), static_cast<RealType>(0)),
 | |
|       static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi)
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE_FRACTION(
 | |
|       pdf(skew_normal_distribution<RealType>(3), static_cast<RealType>(3)),
 | |
|       static_cast<RealType>(0.3989422804014326779399460599343818684759L),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE_FRACTION(
 | |
|       pdf(skew_normal_distribution<RealType>(3, 5), static_cast<RealType>(3)),
 | |
|       static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5),
 | |
|       tolerance);
 | |
| 
 | |
|    // Shape != 0.
 | |
|    BOOST_CHECK_CLOSE_FRACTION(
 | |
|       pdf(skew_normal_distribution<RealType>(3,5,1e-6), static_cast<RealType>(3)),
 | |
|       static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5),
 | |
|       tolerance);
 | |
| 
 | |
| 
 | |
|    // Checks on mean, variance cumulants etc.
 | |
|    // Checks on shape ==0
 | |
| 
 | |
|     RealType tol5 = boost::math::tools::epsilon<RealType>() * 5;
 | |
|     skew_normal_distribution<RealType> dist(8, 3);
 | |
|     RealType x = static_cast<RealType>(0.125);
 | |
| 
 | |
|     BOOST_MATH_STD_USING // ADL of std math lib names
 | |
| 
 | |
|     // mean:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        mean(dist)
 | |
|        , static_cast<RealType>(8), tol5);
 | |
|     // variance:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        variance(dist)
 | |
|        , static_cast<RealType>(9), tol5);
 | |
|     // std deviation:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        standard_deviation(dist)
 | |
|        , static_cast<RealType>(3), tol5);
 | |
|     // hazard:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        hazard(dist, x)
 | |
|        , pdf(dist, x) / cdf(complement(dist, x)), tol5);
 | |
|     // cumulative hazard:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        chf(dist, x)
 | |
|        , -log(cdf(complement(dist, x))), tol5);
 | |
|     // coefficient_of_variation:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        coefficient_of_variation(dist)
 | |
|        , standard_deviation(dist) / mean(dist), tol5);
 | |
|     // mode: 
 | |
|     BOOST_CHECK_CLOSE_FRACTION(mode(dist), static_cast<RealType>(8), 0.001f);
 | |
| 
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        median(dist)
 | |
|        , static_cast<RealType>(8), tol5);
 | |
| 
 | |
|     // skewness:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        skewness(dist)
 | |
|        , static_cast<RealType>(0), tol5);
 | |
|     // kurtosis:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        kurtosis(dist)
 | |
|        , static_cast<RealType>(3), tol5);
 | |
|     // kurtosis excess:
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        kurtosis_excess(dist)
 | |
|        , static_cast<RealType>(0), tol5);
 | |
| 
 | |
|     skew_normal_distribution<RealType> norm01(0, 1); // Test default (0, 1)
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        mean(norm01),
 | |
|        static_cast<RealType>(0), 0); // Mean == zero
 | |
| 
 | |
|     skew_normal_distribution<RealType> defsd_norm01(0); // Test default (0, sd = 1)
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        mean(defsd_norm01),
 | |
|        static_cast<RealType>(0), 0); // Mean == zero
 | |
| 
 | |
|     skew_normal_distribution<RealType> def_norm01; // Test default (0, sd = 1)
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        mean(def_norm01),
 | |
|        static_cast<RealType>(0), 0); // Mean == zero
 | |
| 
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        standard_deviation(def_norm01),
 | |
|        static_cast<RealType>(1), 0);  // 
 | |
| 
 | |
|     BOOST_CHECK_CLOSE(
 | |
|        mode(def_norm01),
 | |
|        static_cast<RealType>(0), 0); // Mode == zero
 | |
| 
 | |
| 
 | |
|     // Skew_normal tests with shape != 0.
 | |
|     {
 | |
|       // Note these tolerances are expressed as percentages, hence the extra * 100 on the end:
 | |
|       RealType tol10 = boost::math::tools::epsilon<RealType>() * 10 * 100;
 | |
|       RealType tol100 = boost::math::tools::epsilon<RealType>() * 100 * 100;
 | |
| 
 | |
|       //skew_normal_distribution<RealType> dist(1.1, 0.02, 0.03);
 | |
| 
 | |
|       BOOST_MATH_STD_USING // ADL of std math lib names.
 | |
| 
 | |
|       // Test values from R = see skew_normal_drv.cpp which included the R code used.
 | |
|       {
 | |
|         dist = skew_normal_distribution<RealType>(static_cast<RealType>(1.1l), static_cast<RealType>(2.2l), static_cast<RealType>(-3.3l));
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(      // mean:
 | |
|            mean(dist)
 | |
|            , static_cast<RealType>(-0.579908992539856825862549L), tol10 * 2);
 | |
| 
 | |
|         std::cout << std::setprecision(17) << "Variance = " << variance(dist) << std::endl;
 | |
|          BOOST_CHECK_CLOSE(      // variance: N[variance[skewnormaldistribution[1.1, 2.2, -3.3]], 50]
 | |
|           variance(dist)
 | |
|           , static_cast<RealType>(2.0179057767837232633904061072049998357047989154484L), tol10);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(      // skewness:
 | |
|            skewness(dist)
 | |
|            , static_cast<RealType>(-0.709854548171537509192897824663L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis:
 | |
|            kurtosis(dist)
 | |
|            , static_cast<RealType>(3.5538752625241790601377L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | |
|            kurtosis_excess(dist)
 | |
|            , static_cast<RealType>(0.5538752625241790601377L), tol100);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(
 | |
|           pdf(dist, static_cast<RealType>(0.4L)),
 | |
|           static_cast<RealType>(0.294140110156599539564571L),
 | |
|           tol10);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(
 | |
|           cdf(dist, static_cast<RealType>(0.4L)),
 | |
|           static_cast<RealType>(0.7339186189278737976326676452L),
 | |
|           tol100);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(
 | |
|           quantile(dist, static_cast<RealType>(0.3L)),
 | |
|           static_cast<RealType>(-1.180104068086875314419247L),
 | |
|           tol100);
 | |
| 
 | |
| 
 | |
|       { // mode tests
 | |
| 
 | |
|            dist = skew_normal_distribution<RealType>(static_cast<RealType>(0.l), static_cast<RealType>(1.l), static_cast<RealType>(4.l));
 | |
| 
 | |
|        // cout << "pdf(dist, 0) = " << pdf(dist, 0) <<  ", pdf(dist, 0.45) = " << pdf(dist, 0.45) << endl;
 | |
|        // BOOST_CHECK_CLOSE(mode(dist), boost::math::constants::root_two<RealType>() / 2, tol5);
 | |
|         BOOST_CHECK_CLOSE(mode(dist), static_cast<RealType>(0.41697299497388863932L), tol100);
 | |
|       }
 | |
| 
 | |
| 
 | |
|       }
 | |
|       {
 | |
|         dist = skew_normal_distribution<RealType>(static_cast<RealType>(1.1l), static_cast<RealType>(0.02l), static_cast<RealType>(0.03l));
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(      // mean:
 | |
|            mean(dist)
 | |
|            , static_cast<RealType>(1.1004785154529557886162L), tol10);
 | |
|         BOOST_CHECK_CLOSE(      // variance:
 | |
|           variance(dist)
 | |
|            , static_cast<RealType>(0.00039977102296128251645L), tol10);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(      // skewness:
 | |
|            skewness(dist)
 | |
|            , static_cast<RealType>(5.8834811259890359782e-006L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis:
 | |
|            kurtosis(dist)
 | |
|            , static_cast<RealType>(3.L + 9.2903475812137800239002e-008L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | |
|            kurtosis_excess(dist)
 | |
|            , static_cast<RealType>(9.2903475812137800239002e-008L), tol100);
 | |
|       }
 | |
|       {
 | |
|         dist = skew_normal_distribution<RealType>(static_cast<RealType>(10.1l), static_cast<RealType>(5.l), static_cast<RealType>(-0.03l));
 | |
|         BOOST_CHECK_CLOSE(      // mean:
 | |
|            mean(dist)
 | |
|            , static_cast<RealType>(9.9803711367610528459485937L), tol10);
 | |
|         BOOST_CHECK_CLOSE(      // variance:
 | |
|           variance(dist)
 | |
|            , static_cast<RealType>(24.98568893508015727823L), tol10);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(      // skewness:
 | |
|            skewness(dist)
 | |
|            , static_cast<RealType>(-5.8834811259890359782085e-006L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis:
 | |
|            kurtosis(dist)
 | |
|            , static_cast<RealType>(3.L + 9.2903475812137800239002e-008L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | |
|            kurtosis_excess(dist)
 | |
|            , static_cast<RealType>(9.2903475812137800239002e-008L), tol100);
 | |
|       }
 | |
|       {
 | |
|         dist = skew_normal_distribution<RealType>(static_cast<RealType>(-10.1l), static_cast<RealType>(5.l), static_cast<RealType>(30.l));
 | |
|         BOOST_CHECK_CLOSE(      // mean:
 | |
|            mean(dist)
 | |
|            , static_cast<RealType>(-6.11279169674138408531365L), 2 * tol10);
 | |
|         BOOST_CHECK_CLOSE(      // variance:
 | |
|           variance(dist)
 | |
|           , static_cast<RealType>(9.10216994642554914628242L), tol10 * 2);
 | |
| 
 | |
|         BOOST_CHECK_CLOSE(      // skewness:
 | |
|            skewness(dist)
 | |
|            , static_cast<RealType>(0.99072425443686904424L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis:
 | |
|            kurtosis(dist)
 | |
|            , static_cast<RealType>(3.L + 0.8638862008406084244563L), tol100);
 | |
|         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | |
|            kurtosis_excess(dist)
 | |
|            , static_cast<RealType>(0.8638862008406084244563L), tol100);
 | |
|       }
 | |
| 
 | |
|       BOOST_MATH_CHECK_THROW(cdf(skew_normal_distribution<RealType>(0, 0, 0), 0), std::domain_error);
 | |
|       BOOST_MATH_CHECK_THROW(cdf(skew_normal_distribution<RealType>(0, -1, 0), 0), std::domain_error);
 | |
|       BOOST_MATH_CHECK_THROW(quantile(skew_normal_distribution<RealType>(0, 1, 0), -1), std::domain_error);
 | |
|       BOOST_MATH_CHECK_THROW(quantile(skew_normal_distribution<RealType>(0, 1, 0), 2), std::domain_error);
 | |
|       check_out_of_range<skew_normal_distribution<RealType> >(1, 1, 1);
 | |
|     }
 | |
| 
 | |
| 
 | |
| } // template <class RealType>void test_spots(RealType)
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE( test_main )
 | |
| {
 | |
| 
 | |
| 
 | |
|   using boost::math::skew_normal;
 | |
|   using boost::math::skew_normal_distribution;
 | |
| 
 | |
|   //int precision = 17; // std::numeric_limits<double::max_digits10;
 | |
|   double tolfeweps = numeric_limits<double>::epsilon() * 5;
 | |
|   //double tol6decdigits = numeric_limits<float>::epsilon() * 2;
 | |
|   // Check that can generate skew_normal distribution using the two convenience methods:
 | |
|   boost::math::skew_normal w12(1., 2); // Using typedef.
 | |
|   boost::math::skew_normal_distribution<> w01; // Use default unity values for mean and scale.
 | |
|   // Note NOT myn01() as the compiler will interpret as a function!
 | |
| 
 | |
|   // Checks on constructors.
 | |
|   // Default parameters.
 | |
|   BOOST_CHECK_EQUAL(w01.location(), 0);
 | |
|   BOOST_CHECK_EQUAL(w01.scale(), 1);
 | |
|   BOOST_CHECK_EQUAL(w01.shape(), 0);
 | |
| 
 | |
|   skew_normal_distribution<> w23(2., 3); // Using default RealType double.
 | |
|   BOOST_CHECK_EQUAL(w23.scale(), 3);
 | |
|   BOOST_CHECK_EQUAL(w23.shape(), 0);
 | |
| 
 | |
|   skew_normal_distribution<> w123(1., 2., 3.); // Using default RealType double.
 | |
|   BOOST_CHECK_EQUAL(w123.location(), 1.);
 | |
|   BOOST_CHECK_EQUAL(w123.scale(), 2.);
 | |
|   BOOST_CHECK_EQUAL(w123.shape(), 3.);
 | |
| 
 | |
|   BOOST_CHECK_CLOSE_FRACTION(mean(w01), static_cast<double>(0), tolfeweps); // Default mean == zero
 | |
|   BOOST_CHECK_CLOSE_FRACTION(scale(w01), static_cast<double>(1), tolfeweps); // Default scale == unity
 | |
| 
 | |
|   // Basic sanity-check spot values for all floating-point types..
 | |
|   // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | |
|   test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
 | |
|   test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
 | |
| #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | |
|   test_spots(0.0L); // Test long double.
 | |
| #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
 | |
|   test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | |
| #endif
 | |
| #else
 | |
|   std::cout << "<note>The long double tests have been disabled on this platform "
 | |
|     "either because the long double overloads of the usual math functions are "
 | |
|     "not available at all, or because they are too inaccurate for these tests "
 | |
|     "to pass.</note>" << std::endl;
 | |
| #endif
 | |
|   /*      */
 | |
|   
 | |
| } // BOOST_AUTO_TEST_CASE( test_main )
 | |
| 
 | |
| /*
 | |
| 
 | |
| Output:
 | |
| 
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 |