mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			184 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2006.
 | |
| // Copyright Paul A. Bristow 2007, 2009
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | |
| 
 | |
| #include <boost/math/concepts/real_concept.hpp>
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/tools/stats.hpp>
 | |
| #include <boost/math/tools/test.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include "functor.hpp"
 | |
| 
 | |
| #include "handle_test_result.hpp"
 | |
| #include "table_type.hpp"
 | |
| 
 | |
| #ifndef SC_
 | |
| #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
 | |
| #endif
 | |
| 
 | |
| template <class Real>
 | |
| struct negative_tgamma_ratio
 | |
| {
 | |
|    template <class Row>
 | |
|    Real operator()(const Row& row)
 | |
|    {
 | |
| #ifdef TGAMMA_DELTA_RATIO_FUNCTION_TO_TEST
 | |
|       return TGAMMA_DELTA_RATIO_FUNCTION_TO_TEST(Real(row[0]), Real(-Real(row[1])));
 | |
| #else
 | |
|       return boost::math::tgamma_delta_ratio(Real(row[0]), Real(-Real(row[1])));
 | |
| #endif
 | |
|    }
 | |
| };
 | |
| 
 | |
| template <class Real, class T>
 | |
| void do_test_tgamma_delta_ratio(const T& data, const char* type_name, const char* test_name)
 | |
| {
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(TGAMMA_DELTA_RATIO_FUNCTION_TO_TEST))
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    typedef value_type (*pg)(value_type, value_type);
 | |
| #ifdef TGAMMA_DELTA_RATIO_FUNCTION_TO_TEST
 | |
|    pg funcp = TGAMMA_DELTA_RATIO_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|    pg funcp = boost::math::tgamma_delta_ratio<value_type, value_type>;
 | |
| #else
 | |
|    pg funcp = boost::math::tgamma_delta_ratio;
 | |
| #endif
 | |
| 
 | |
|    boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
|    std::cout << "Testing " << test_name << " with type " << type_name
 | |
|       << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
 | |
| 
 | |
|    //
 | |
|    // test tgamma_delta_ratio against data:
 | |
|    //
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(funcp, 0, 1),
 | |
|       extract_result<Real>(2));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(), type_name, "tgamma_delta_ratio", test_name);
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       negative_tgamma_ratio<Real>(),
 | |
|       extract_result<Real>(3));
 | |
|    std::string s(test_name);
 | |
|    s += " (negative delta)";
 | |
|    handle_test_result(result, data[result.worst()], result.worst(), type_name, "tgamma_delta_ratio", s.c_str());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <class Real, class T>
 | |
| void do_test_tgamma_ratio(const T& data, const char* type_name, const char* test_name)
 | |
| {
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(TGAMMA_RATIO_FUNCTION_TO_TEST))
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    typedef value_type (*pg)(value_type, value_type);
 | |
| #ifdef TGAMMA_RATIO_FUNCTION_TO_TEST
 | |
|    pg funcp = TGAMMA_RATIO_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|    pg funcp = boost::math::tgamma_ratio<value_type, value_type>;
 | |
| #else
 | |
|    pg funcp = boost::math::tgamma_ratio;
 | |
| #endif
 | |
| 
 | |
|    boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
|    std::cout << "Testing " << test_name << " with type " << type_name
 | |
|       << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
 | |
| 
 | |
|    //
 | |
|    // test tgamma_ratio against data:
 | |
|    //
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(funcp, 0, 1),
 | |
|       extract_result<Real>(2));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(), type_name, "tgamma_ratio", test_name);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void test_tgamma_ratio(T, const char* name)
 | |
| {
 | |
|    //
 | |
|    // The actual test data is rather verbose, so it's in a separate file
 | |
|    //
 | |
| #  include "tgamma_delta_ratio_data.ipp"
 | |
| 
 | |
|    do_test_tgamma_delta_ratio<T>(tgamma_delta_ratio_data, name, "tgamma + small delta ratios");
 | |
| 
 | |
| #  include "tgamma_delta_ratio_int.ipp"
 | |
| 
 | |
|    do_test_tgamma_delta_ratio<T>(tgamma_delta_ratio_int, name, "tgamma + small integer ratios");
 | |
| 
 | |
| #  include "tgamma_delta_ratio_int2.ipp"
 | |
| 
 | |
|    do_test_tgamma_delta_ratio<T>(tgamma_delta_ratio_int2, name, "integer tgamma ratios");
 | |
| 
 | |
| #  include "tgamma_ratio_data.ipp"
 | |
| 
 | |
|    do_test_tgamma_ratio<T>(tgamma_ratio_data, name, "tgamma ratios");
 | |
| 
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void test_spots(T, const char*)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
| # pragma warning(push)
 | |
| # pragma warning(disable:4127 4756)
 | |
| #endif
 | |
|    //
 | |
|    // A few special spot tests:
 | |
|    //
 | |
|    BOOST_MATH_STD_USING
 | |
|    T tol = boost::math::tools::epsilon<T>() * 20;
 | |
|    if(std::numeric_limits<T>::max_exponent > 200)
 | |
|    {
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -500)), T(180.25)), T(8.0113754557649679470816892372669519037339812035512e-178L), 3 * tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -525)), T(192.25)), T(1.5966560279353205461166489184101261541784867035063e-197L), 3 * tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(182.25), T(ldexp(T(1), -500))), T(4.077990437521002194346763299159975185747917450788e+181L), 3 * tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(193.25), T(ldexp(T(1), -525))), T(1.2040790040958522422697601672703926839178050326148e+199L), 3 * tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(193.25), T(194.75)), T(0.00037151765099653237632823607820104961270831942138159L), 3 * tol);
 | |
|    }
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::tgamma_ratio(T(0), T(2)), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::tgamma_ratio(T(2), T(0)), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::tgamma_ratio(T(-1), T(2)), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(boost::math::tgamma_ratio(T(2), T(-1)), std::domain_error);
 | |
|    if(std::numeric_limits<T>::has_infinity)
 | |
|    {
 | |
|       BOOST_MATH_CHECK_THROW(boost::math::tgamma_ratio(std::numeric_limits<T>::infinity(), T(2)), std::domain_error);
 | |
|       BOOST_MATH_CHECK_THROW(boost::math::tgamma_ratio(T(2), std::numeric_limits<T>::infinity()), std::domain_error);
 | |
|    }
 | |
|    //
 | |
|    // Some bug cases from Rocco Romeo:
 | |
|    //
 | |
|    if(std::numeric_limits<T>::min_exponent < -1020)
 | |
|    {
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1020)), T(100)), T(1.20390418056093374068585549133304106854441830616070800417660e151L), tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1020)), T(150)), T(2.94980580122226729924781231239336413648584663386992050529324e46L), tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1020)), T(180)), T(1.00669209319561468911303652019446665496398881230516805140750e-20L), tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1020)), T(220)), T(1.08230263539550701700187215488533416834407799907721731317227e-112L), tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1020)), T(260)), T(7.62689807594728483940172477902929825624752380292252137809206e-208L), tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1020)), T(290)), T(5.40206998243175672775582485422795773284966068149812072521290e-281L), tol);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_delta_ratio(T(ldexp(T(1), -1020)), T(ldexp(T(1), -1020))), T(2), tol);
 | |
|       if(0 != ldexp(T(1), -1074))
 | |
|       {
 | |
|          // This is denorm_min at double precision:
 | |
|          BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(ldexp(T(1), -1074)), T(200)), T(5.13282785052571536804189023927976812551830809667482691717029e-50), tol * 50);
 | |
|          BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_ratio(T(200), T(ldexp(T(1), -1074))), T(1.94824379293682687942882944294875087145333536754699303593931e49), tol * 10);
 | |
|          BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_delta_ratio(T(ldexp(T(1), -1074)), T(200)), T(5.13282785052571536804189023927976812551830809667482691717029e-50), tol * 10);
 | |
|          BOOST_CHECK_CLOSE_FRACTION(boost::math::tgamma_delta_ratio(T(200), T(ldexp(T(1), -1074))), T(1), tol);
 | |
|       }
 | |
|    }
 | |
| }
 |