mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			135 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * find_crossing.cpp
 | |
|  *
 | |
|  * Finds the energy threshold crossing for a damped oscillator.
 | |
|  * The algorithm uses a dense out stepper with find_if to first find an
 | |
|  * interval containing the threshold crossing and the utilizes the dense out
 | |
|  * functionality with a bisection to further refine the interval until some
 | |
|  * desired precision is reached.
 | |
|  *
 | |
|  * Copyright 2015 Mario Mulansky
 | |
|  *
 | |
|  * Distributed under the Boost Software License, Version 1.0.
 | |
|  * (See accompanying file LICENSE_1_0.txt or
 | |
|  * copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
|  */
 | |
| 
 | |
| 
 | |
| 
 | |
| #include <iostream>
 | |
| #include <utility>
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| 
 | |
| #include <boost/numeric/odeint/stepper/runge_kutta_dopri5.hpp>
 | |
| #include <boost/numeric/odeint/stepper/generation.hpp>
 | |
| #include <boost/numeric/odeint/iterator/adaptive_iterator.hpp>
 | |
| 
 | |
| namespace odeint = boost::numeric::odeint;
 | |
| 
 | |
| typedef std::array<double, 2> state_type;
 | |
| 
 | |
| const double gam = 1.0;  // damping strength
 | |
| 
 | |
| void damped_osc(const state_type &x, state_type &dxdt, const double /*t*/)
 | |
| {
 | |
|     dxdt[0] = x[1];
 | |
|     dxdt[1] = -x[0] - gam * x[1];
 | |
| }
 | |
| 
 | |
| 
 | |
| struct energy_condition {
 | |
| 
 | |
|     // defines the threshold crossing in terms of a boolean functor
 | |
| 
 | |
|     double m_min_energy;
 | |
| 
 | |
|     energy_condition(const double min_energy)
 | |
|         : m_min_energy(min_energy) { }
 | |
| 
 | |
|     double energy(const state_type &x) {
 | |
|         return 0.5 * x[1] * x[1] + 0.5 * x[0] * x[0];
 | |
|     }
 | |
| 
 | |
|     bool operator()(const state_type &x) {
 | |
|         // becomes true if the energy becomes smaller than the threshold
 | |
|         return energy(x) <= m_min_energy;
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| template<class System, class Condition>
 | |
| std::pair<double, state_type>
 | |
| find_condition(state_type &x0, System sys, Condition cond,
 | |
|                const double t_start, const double t_end, const double dt,
 | |
|                const double precision = 1E-6) {
 | |
| 
 | |
|     // integrates an ODE until some threshold is crossed
 | |
|     // returns time and state at the point of the threshold crossing
 | |
|     // if no threshold crossing is found, some time > t_end is returned
 | |
| 
 | |
|     auto stepper = odeint::make_dense_output(1.0e-6, 1.0e-6,
 | |
|                                              odeint::runge_kutta_dopri5<state_type>());
 | |
| 
 | |
|     auto ode_range = odeint::make_adaptive_range(std::ref(stepper), sys, x0,
 | |
|                                                  t_start, t_end, dt);
 | |
| 
 | |
|     // find the step where the condition changes
 | |
|     auto found_iter = std::find_if(ode_range.first, ode_range.second, cond);
 | |
| 
 | |
|     if(found_iter == ode_range.second)
 | |
|     {
 | |
|         // no threshold crossing -> return time after t_end and ic
 | |
|         return std::make_pair(t_end + dt, x0);
 | |
|     }
 | |
| 
 | |
|     // the dense out stepper now covers the interval where the condition changes
 | |
|     // improve the solution by bisection
 | |
|     double t0 = stepper.previous_time();
 | |
|     double t1 = stepper.current_time();
 | |
|     double t_m;
 | |
|     state_type x_m;
 | |
|     // use odeint's resizing functionality to allocate memory for x_m
 | |
|     odeint::adjust_size_by_resizeability(x_m, x0,
 | |
|                                          typename odeint::is_resizeable<state_type>::type());
 | |
|     while(std::abs(t1 - t0) > precision) {
 | |
|         t_m = 0.5 * (t0 + t1);  // get the mid point time
 | |
|         stepper.calc_state(t_m, x_m); // obtain the corresponding state
 | |
|         if (cond(x_m))
 | |
|             t1 = t_m;  // condition changer lies before midpoint
 | |
|         else
 | |
|             t0 = t_m;  // condition changer lies after midpoint
 | |
|     }
 | |
|     // we found the interval of size eps, take it's midpoint as final guess
 | |
|     t_m = 0.5 * (t0 + t1);
 | |
|     stepper.calc_state(t_m, x_m);
 | |
|     return std::make_pair(t_m, x_m);
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|     state_type x0 = {{10.0, 0.0}};
 | |
|     const double t_start = 0.0;
 | |
|     const double t_end = 10.0;
 | |
|     const double dt = 0.1;
 | |
|     const double threshold = 0.1;
 | |
| 
 | |
|     energy_condition cond(threshold);
 | |
|     state_type x_cond;
 | |
|     double t_cond;
 | |
|     std::tie(t_cond, x_cond) = find_condition(x0, damped_osc, cond,
 | |
|                                               t_start, t_end, dt, 1E-6);
 | |
|     if(t_cond > t_end)
 | |
|     {
 | |
|         // time after t_end -> no threshold crossing within [t_start, t_end]
 | |
|         std::cout << "No threshold crossing found." << std::endl;
 | |
|     } else
 | |
|     {
 | |
|         std::cout.precision(16);
 | |
|         std::cout << "Time of energy threshold crossing: " << t_cond << std::endl;
 | |
|         std::cout << "State: [" << x_cond[0] << " , " << x_cond[1] << "]" << std::endl;
 | |
|         std::cout << "Energy: " << cond.energy(x_cond) << std::endl;
 | |
|     }
 | |
| }
 |