mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@8026 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			76 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| subroutine analytic(d,npts,nfft,c,pc,beq)
 | |
| 
 | |
| ! Convert real data to analytic signal
 | |
| 
 | |
|   parameter (NFFTMAX=1024*1024)
 | |
| 
 | |
|   real d(npts)              ! passband signal
 | |
|   real h(NFFTMAX/2)         ! real BPF magnitude
 | |
|   real*8 pc(5),pclast(5)    ! static phase coeffs
 | |
|   real*8 ac(5),aclast(5)    ! amp coeffs
 | |
|   real*8 fp
 | |
| 
 | |
|   complex corr(NFFTMAX/2)  ! complex frequency-dependent correction 
 | |
|   complex c(NFFTMAX)        ! analytic signal
 | |
| 
 | |
|   logical*1 beq            ! boolean static equalizer flag
 | |
| 
 | |
|   data nfft0/0/
 | |
|   data aclast/0.0,0.0,0.0,0.0,0.0/
 | |
|   data pclast/0.0,0.0,0.0,0.0,0.0/
 | |
| !  data ac/1.0,0.05532,0.11438,0.12918,0.09274/ ! amp coeffs for TS2000
 | |
|   data ac/1.0,0.0,0.0,0.0,0.0/ 
 | |
| 
 | |
|   save corr,nfft0,h,ac,aclast,pclast,pi,t,beta
 | |
| 
 | |
|   df=12000.0/nfft
 | |
|   nh=nfft/2
 | |
|   if( nfft.ne.nfft0 ) then
 | |
|      pi=4.0*atan(1.0)
 | |
|      t=1.0/2000.0
 | |
|      beta=0.1
 | |
|      do i=1,nh+1
 | |
|         ff=(i-1)*df
 | |
|         f=ff-1500.0
 | |
|         h(i)=1.0
 | |
|         if(abs(f).gt.(1-beta)/(2*t) .and. abs(f).le.(1+beta)/(2*t)) then
 | |
|            h(i)=h(i)*0.5*(1+cos((pi*t/beta )*(abs(f)-(1-beta)/(2*t))))
 | |
|         elseif( abs(f) .gt. (1+beta)/(2*t) ) then
 | |
|            h(i)=0.0
 | |
|         endif
 | |
|      enddo
 | |
|      nfft0=nfft
 | |
|   endif
 | |
| 
 | |
|   if( any(aclast .ne. ac) .or. any(pclast .ne. pc) ) then
 | |
|      aclast=ac
 | |
|      pclast=pc
 | |
| !     write(*,3001) pc
 | |
| !3001 format('Phase coeffs:',5f12.6)
 | |
|      do i=1,nh+1
 | |
|         ff=(i-1)*df
 | |
|         f=ff-1500.0
 | |
|         fp=f/1000.0
 | |
|         corr(i)=ac(1)+fp*(ac(2)+fp*(ac(3)+fp*(ac(4)+fp*ac(5))))
 | |
|         pd=fp*fp*(pc(3)+fp*(pc(4)+fp*pc(5))) ! ignore 1st two terms
 | |
|         corr(i)=corr(i)*cmplx(cos(pd),sin(pd))
 | |
|      enddo
 | |
|   endif
 | |
| 
 | |
|   fac=2.0/nfft
 | |
|   c(1:npts)=fac*d(1:npts)
 | |
|   c(npts+1:nfft)=0.
 | |
|   call four2a(c,nfft,1,-1,1)               !Forward c2c FFT
 | |
| 
 | |
|   if( beq ) then
 | |
|     c(1:nh+1)=h(1:nh+1)*corr(1:nh+1)*c(1:nh+1)
 | |
|   else
 | |
|     c(1:nh+1)=h(1:nh+1)*c(1:nh+1)
 | |
|   endif
 | |
| 
 | |
|   c(1)=0.5*c(1)                            !Half of DC term
 | |
|   c(nh+2:nfft)=0.                          !Zero the negative frequencies
 | |
|   call four2a(c,nfft,1,1,1)                !Inverse c2c FFT
 | |
|   return
 | |
| end subroutine analytic
 |