mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3980 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #define RADS 0.0174532925199433
 | |
| #define DEGS 57.2957795130823
 | |
| #define TPI 6.28318530717959
 | |
| #define PI 3.1415927
 | |
| 
 | |
| /* ratio of     earth radius to astronomical unit */
 | |
| #define ER_OVER_AU 0.0000426352325194252
 | |
| 
 | |
| /* all prototypes here */
 | |
| 
 | |
| double getcoord(int coord);
 | |
| void getargs(int argc, char *argv[], int *y, int *m, double *tz, double *glong, double *glat);
 | |
| double range(double y);
 | |
| double rangerad(double y);
 | |
| double days(int y, int m, int dn, double hour);
 | |
| double days_(int *y, int *m, int *dn, double *hour);
 | |
| void moonpos(double, double *, double *, double *);
 | |
| void sunpos(double , double *, double *, double *);
 | |
| double moontransit(int y, int m, int d, double timezone, double glat, double glong, int *nt);
 | |
| double atan22(double y, double x);
 | |
| double epsilon(double d);
 | |
| void equatorial(double d, double *lon, double *lat, double *r);
 | |
| void ecliptic(double d, double *lon, double *lat, double *r);
 | |
| double gst(double d);
 | |
| void topo(double lst, double glat, double *alp, double *dec, double *r);
 | |
| double alt(double glat, double ha, double dec);
 | |
| void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p);
 | |
| void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill);
 | |
| int daysinmonth(int y, int m);
 | |
| int isleap(int y);
 | |
| void tmoonsub_(double *day, double *glat, double *glong, double *moonalt, 
 | |
|    double *mrv, double *l, double *b, double *paxis);
 | |
| 
 | |
| static const char
 | |
| usage[] = "  Usage: tmoon date[yyyymm] timz[+/-h.hh] long[+/-dddmm] lat[+/-ddmm]\n"
 | |
|             "example: tmoon 200009 0 -00155 5230\n";
 | |
| 
 | |
| /*
 | |
|   getargs() gets the arguments from the command line, does some basic error
 | |
|   checking, and converts arguments into numerical form. Arguments are passed
 | |
|   back in pointers. Error messages print to stderr so re-direction of output
 | |
|   to file won't leave users blind. Error checking prints list of all errors
 | |
|   in a command line before quitting.
 | |
| */
 | |
| void getargs(int argc, char *argv[], int *y, int *m, double *tz,
 | |
|              double *glong, double *glat) {
 | |
| 
 | |
|   int date, latitude, longitude;
 | |
|   int mflag = 0, yflag = 0, longflag = 0, latflag = 0, tzflag = 0;
 | |
|   int longminflag = 0, latminflag = 0, dflag = 0;
 | |
| 
 | |
|   /* if not right number of arguments, then print example command line */
 | |
| 
 | |
|   if (argc !=5) {
 | |
|     fprintf(stderr, usage);
 | |
|     exit(EXIT_FAILURE);
 | |
|   }
 | |
| 
 | |
|   date = atoi(argv[1]);
 | |
|   *y = date / 100;
 | |
|   *m = date - *y * 100;
 | |
|   *tz = (double) atof(argv[2]);
 | |
|   longitude = atoi(argv[3]);
 | |
|   latitude = atoi(argv[4]);
 | |
|   *glong = RADS * getcoord(longitude);
 | |
|   *glat = RADS * getcoord(latitude);
 | |
| 
 | |
|   /* set a flag for each error found */
 | |
| 
 | |
|   if (*m > 12 || *m < 1) mflag = 1;
 | |
|   if (*y > 2500) yflag = 1;
 | |
|   if (date < 150001) dflag = 1;
 | |
|   if (fabs((float) *glong) > 180 * RADS) longflag = 1;
 | |
|   if (abs(longitude) % 100 > 59) longminflag = 1;
 | |
|   if (fabs((float) *glat) > 90 * RADS) latflag = 1;
 | |
|   if (abs(latitude) % 100 > 59) latminflag = 1;
 | |
|   if (fabs((float) *tz) > 12) tzflag = 1;
 | |
| 
 | |
|   /* print all the errors found */
 | |
|   
 | |
|   if (dflag == 1) {
 | |
|     fprintf(stderr, "date: dates must be in form yyyymm, gregorian, and later than 1500 AD\n");
 | |
|   }
 | |
|   if (yflag == 1) {
 | |
|     fprintf(stderr, "date: too far in future - accurate from 1500 to 2500\n");
 | |
|   }
 | |
|   if (mflag == 1) {
 | |
|     fprintf(stderr, "date: month must be in range 0 to 12, eg - August 2000 is entered as 200008\n");
 | |
|   }
 | |
|   if (tzflag == 1) {
 | |
|     fprintf(stderr, "timz: must be in range +/- 12 hours, eg -6 for Chicago\n");
 | |
|   }
 | |
|   if (longflag == 1) {
 | |
|     fprintf(stderr, "long: must be in range +/- 180 degrees\n");
 | |
|   }
 | |
|   if (longminflag == 1) {
 | |
|     fprintf(stderr, "long: last two digits are arcmin - max 59\n");
 | |
|   }
 | |
|   if (latflag == 1) {
 | |
|     fprintf(stderr, " lat: must be in range +/- 90 degrees\n");
 | |
|   }
 | |
|   if (latminflag == 1) {
 | |
|     fprintf(stderr, " lat: last two digits are arcmin - max 59\n");
 | |
|   }
 | |
| 
 | |
|   /* quits if one or more flags set */
 | |
| 
 | |
|   if (dflag + mflag + yflag + longflag + latflag + tzflag + longminflag + latminflag > 0) {
 | |
|     exit(EXIT_FAILURE);
 | |
|   }
 | |
|   
 | |
| }
 | |
| 
 | |
| /*
 | |
|    returns coordinates in decimal degrees given the
 | |
|    coord as a ddmm value stored in an integer.
 | |
| */
 | |
| double getcoord(int coord) {
 | |
|   int west = 1;
 | |
|   double glg, deg;
 | |
|   if (coord < 0) west = -1;
 | |
|   glg = fabs((double) coord/100);
 | |
|   deg = floor(glg);
 | |
|   glg = west* (deg + (glg - deg)*100 / 60);
 | |
|   return(glg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   days() takes the year, month, day in the month and decimal hours
 | |
|   in the day and returns the number of days since J2000.0.
 | |
|   Assumes Gregorian calendar.
 | |
| */
 | |
| double days(int y, int m, int d, double h) {
 | |
|   int a, b;
 | |
|   double day;
 | |
|   
 | |
|   /*
 | |
|     The lines below work from 1900 march to feb 2100
 | |
|     a = 367 * y - 7 * (y + (m + 9) / 12) / 4 + 275 * m / 9 + d;
 | |
|     day = (double)a - 730531.5 + hour / 24;
 | |
|   */
 | |
| 
 | |
|   /*  These lines work for any Gregorian date since 0 AD */
 | |
|   if (m ==1 || m==2) {
 | |
|     m +=12;
 | |
|     y -= 1;
 | |
|   }
 | |
|   a = y / 100;
 | |
|   b = 2 - a + a/4;
 | |
|   day = floor(365.25*(y + 4716)) + floor(30.6001*(m + 1))
 | |
|     + d + b - 1524.5 - 2451545 + h/24;
 | |
|   return(day);
 | |
| }
 | |
| double days_(int *y0, int *m0, int *d0, double *h0) 
 | |
| {
 | |
|   return days(*y0,*m0,*d0,*h0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns 1 if y a leap year, and 0 otherwise, according
 | |
| to the Gregorian calendar
 | |
| */
 | |
| int isleap(int y) {
 | |
|   int a = 0;
 | |
|   if(y % 4 == 0) a = 1;
 | |
|   if(y % 100 == 0) a = 0;
 | |
|   if(y % 400 == 0) a = 1;
 | |
|   return(a);
 | |
| }
 | |
| 
 | |
| /*
 | |
| Given the year and the month, function returns the
 | |
| number of days in the month. Valid for Gregorian
 | |
| calendar.
 | |
| */
 | |
| int daysinmonth(int y, int m) {
 | |
|   int b = 31;
 | |
|   if(m == 2) {
 | |
|     if(isleap(y) == 1) b= 29;
 | |
|     else b = 28;
 | |
|   }
 | |
|   if(m == 4 || m == 6 || m == 9 || m == 11) b = 30;
 | |
|   return(b);
 | |
| }
 | |
| 
 | |
| /*
 | |
| moonpos() takes days from J2000.0 and returns ecliptic coordinates
 | |
| of moon in the pointers. Note call by reference.
 | |
| This function is within a couple of arcminutes most of the time,
 | |
| and is truncated from the Meeus Ch45 series, themselves truncations of
 | |
| ELP-2000. Returns moon distance in earth radii.
 | |
| Terms have been written out explicitly rather than using the
 | |
| table based method as only a small number of terms is
 | |
| retained.
 | |
| */
 | |
| void moonpos(double d, double *lambda, double *beta, double *rvec) {
 | |
|   double dl, dB, dR, L, D, M, M1, F, e, lm, bm, rm, t;
 | |
| 
 | |
|   t = d / 36525;
 | |
| 
 | |
|   L = range(218.3164591  + 481267.88134236  * t) * RADS;
 | |
|   D = range(297.8502042  + 445267.1115168  * t) * RADS;
 | |
|   M = range(357.5291092  + 35999.0502909  * t) * RADS;
 | |
|   M1 = range(134.9634114  + 477198.8676313  * t - .008997 * t * t) * RADS;
 | |
|   F = range(93.27209929999999  + 483202.0175273  * t - .0034029*t*t)*RADS;
 | |
|   e = 1 - .002516 * t;
 | |
| 
 | |
|   dl =      6288774 * sin(M1);
 | |
|   dl +=     1274027 * sin(2 * D - M1);
 | |
|   dl +=      658314 * sin(2 * D);
 | |
|   dl +=      213618 * sin(2 * M1);
 | |
|   dl -=  e * 185116 * sin(M);
 | |
|   dl -=      114332 * sin(2 * F) ;
 | |
|   dl +=       58793 * sin(2 * D - 2 * M1);
 | |
|   dl +=   e * 57066 * sin(2 * D - M - M1) ;
 | |
|   dl +=       53322 * sin(2 * D + M1);
 | |
|   dl +=   e * 45758 * sin(2 * D - M);
 | |
|   dl -=   e * 40923 * sin(M - M1);
 | |
|   dl -=       34720 * sin(D) ;
 | |
|   dl -=   e * 30383 * sin(M + M1) ;
 | |
|   dl +=       15327 * sin(2 * D - 2 * F) ;
 | |
|   dl -=       12528 * sin(M1 + 2 * F);
 | |
|   dl +=       10980 * sin(M1 - 2 * F);
 | |
|   lm = rangerad(L + dl / 1000000 * RADS);
 | |
| 
 | |
|   dB =   5128122 * sin(F);
 | |
|   dB +=   280602 * sin(M1 + F);
 | |
|   dB +=   277693 * sin(M1 - F);
 | |
|   dB +=   173237 * sin(2 * D - F);
 | |
|   dB +=    55413 * sin(2 * D - M1 + F);
 | |
|   dB +=    46271 * sin(2 * D - M1 - F);
 | |
|   dB +=    32573 * sin(2 * D + F);
 | |
|   dB +=    17198 * sin(2 * M1 + F);
 | |
|   dB +=     9266 * sin(2 * D + M1 - F);
 | |
|   dB +=     8822 * sin(2 * M1 - F);
 | |
|   dB += e * 8216 * sin(2 * D - M - F);
 | |
|   dB +=     4324 * sin(2 * D - 2 * M1 - F);
 | |
|   bm = dB / 1000000 * RADS;
 | |
| 
 | |
|   dR =    -20905355 * cos(M1);
 | |
|   dR -=     3699111 * cos(2 * D - M1);
 | |
|   dR -=     2955968 * cos(2 * D);
 | |
|   dR -=      569925 * cos(2 * M1);
 | |
|   dR +=   e * 48888 * cos(M);
 | |
|   dR -=        3149 * cos(2 * F);
 | |
|   dR +=      246158 * cos(2 * D - 2 * M1);
 | |
|   dR -=  e * 152138 * cos(2 * D - M - M1) ;
 | |
|   dR -=      170733 * cos(2 * D + M1);
 | |
|   dR -=  e * 204586 * cos(2 * D - M);
 | |
|   dR -=  e * 129620 * cos(M - M1);
 | |
|   dR +=      108743 * cos(D);
 | |
|   dR +=  e * 104755 * cos(M + M1);
 | |
|   dR +=       79661 * cos(M1 - 2 * F);
 | |
|   rm = 385000.56  + dR / 1000;
 | |
| 
 | |
|   *lambda = lm;
 | |
|   *beta = bm;
 | |
|   /* distance to Moon must be in Earth radii */
 | |
|   *rvec = rm / 6378.14;
 | |
| }
 | |
| 
 | |
| /*
 | |
| topomoon() takes the local siderial time, the geographical
 | |
| latitude of the observer, and pointers to the geocentric
 | |
| equatorial coordinates. The function overwrites the geocentric
 | |
| coordinates with topocentric coordinates on a simple spherical
 | |
| earth model (no polar flattening). Expects Moon-Earth distance in
 | |
| Earth radii.    Formulas scavenged from Astronomical Almanac 'low
 | |
| precision formulae for Moon position' page D46.
 | |
| */
 | |
| 
 | |
| void topo(double lst, double glat, double *alp, double *dec, double *r) {
 | |
|   double x, y, z, r1;
 | |
|   x = *r * cos(*dec) * cos(*alp) - cos(glat) * cos(lst);
 | |
|   y = *r * cos(*dec) * sin(*alp) - cos(glat) * sin(lst);
 | |
|   z = *r * sin(*dec)  - sin(glat);
 | |
|   r1 = sqrt(x*x + y*y + z*z);
 | |
|   *alp = atan22(y, x);
 | |
|   *dec = asin(z / r1);
 | |
|   *r = r1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| moontransit() takes date, the time zone and geographic longitude
 | |
| of observer and returns the time (decimal hours) of lunar transit
 | |
| on that day if there is one, and sets the notransit flag if there
 | |
| isn't. See Explanatory Supplement to Astronomical Almanac
 | |
| section 9.32 and 9.31 for the method.
 | |
| */
 | |
| 
 | |
| double moontransit(int y, int m, int d, double tz, double glat, double glong, int *notransit) {
 | |
|   double hm, ht, ht1, lon, lat, rv, dnew, lst;
 | |
|   int itcount;
 | |
| 
 | |
|   ht1 = 180 * RADS;
 | |
|   ht = 0;
 | |
|   itcount = 0;
 | |
|   *notransit = 0;
 | |
|   do {
 | |
|     ht = ht1;
 | |
|     itcount++;
 | |
|     dnew = days(y, m, d, ht * DEGS/15) - tz/24;
 | |
|     lst = gst(dnew) + glong;
 | |
|     /* find the topocentric Moon ra (hence hour angle) and dec */
 | |
|     moonpos(dnew, &lon, &lat, &rv);
 | |
|     equatorial(dnew, &lon, &lat, &rv);
 | |
|     topo(lst, glat, &lon, &lat, &rv);
 | |
|     hm = rangerad(lst -  lon);
 | |
|     ht1 = rangerad(ht - hm);
 | |
|     /* if no convergence, then no transit on that day */
 | |
|     if (itcount > 30) {
 | |
|       *notransit = 1;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   while (fabs(ht - ht1) > 0.04 * RADS);
 | |
|   return(ht1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Calculates the selenographic coordinates of either the sub Earth point
 | |
|   (optical libration) or the sub-solar point (selen. coords of centre of
 | |
|   bright hemisphere).  Based on Meeus chapter 51 but neglects physical
 | |
|   libration and nutation, with some simplification of the formulas.
 | |
| */
 | |
| void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p) {
 | |
|   double i, f, omega, w, y, x, a, t, eps;
 | |
|   t = day / 36525;
 | |
|   i = 1.54242 * RADS;
 | |
|   eps = epsilon(day);
 | |
|   f = range(93.2720993 + 483202.0175273 * t - .0034029 * t * t) * RADS;
 | |
|   omega = range(125.044555 - 1934.1361849 * t + .0020762 * t * t) * RADS;
 | |
|   w = lambda - omega;
 | |
|   y = sin(w) * cos(beta) * cos(i) - sin(beta) * sin(i);
 | |
|   x = cos(w) * cos(beta);
 | |
|   a = atan22(y, x);
 | |
|   *l = a - f;
 | |
| 
 | |
|   /*  kludge to catch cases of 'round the back' angles  */
 | |
|   if (*l < -90 * RADS) *l += TPI;
 | |
|   if (*l > 90 * RADS)  *l -= TPI;
 | |
|   *b = asin(-sin(w) * cos(beta) * sin(i) - sin(beta) * cos(i));
 | |
| 
 | |
|   /*  pa pole axis - not used for Sun stuff */
 | |
|   x = sin(i) * sin(omega);
 | |
|   y = sin(i) * cos(omega) * cos(eps) - cos(i) * sin(eps);
 | |
|   w = atan22(x, y);
 | |
|   *p = rangerad(asin(sqrt(x*x + y*y) * cos(alpha - w) / cos(*b)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|   Takes: days since J2000.0, eq coords Moon, ratio of moon to sun distance,
 | |
|   eq coords Sun
 | |
|   Returns: position angle of bright limb wrt NCP, percentage illumination
 | |
|   of Sun
 | |
| */
 | |
| void illumination(double day , double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill) {
 | |
|   double x, y, phi, i;
 | |
|   (void)day;
 | |
|   y = cos(sdec) * sin(sra - lra);
 | |
|   x = sin(sdec) * cos(ldec) - cos(sdec) * sin(ldec) * cos (sra - lra);
 | |
|   *pabl = atan22(y, x);
 | |
|   phi = acos(sin(sdec) * sin(ldec) + cos(sdec) * cos(ldec) * cos(sra-lra));
 | |
|   i = atan22(sin(phi) , (dr - cos(phi)));
 | |
|   *ill = 0.5*(1 + cos(i));
 | |
| }
 | |
| 
 | |
| /*
 | |
| sunpos() takes days from J2000.0 and returns ecliptic longitude
 | |
| of Sun in the pointers. Latitude is zero at this level of precision,
 | |
| but pointer left in for consistency in number of arguments.
 | |
| This function is within 0.01 degree (1 arcmin) almost all the time
 | |
| for a century either side of J2000.0. This is from the 'low precision
 | |
| fomulas for the Sun' from C24 of Astronomical Alamanac
 | |
| */
 | |
| void sunpos(double d, double *lambda, double *beta, double *rvec) {
 | |
|   double L, g, ls, bs, rs;
 | |
| 
 | |
|   L = range(280.461 + .9856474 * d) * RADS;
 | |
|   g = range(357.528 + .9856003 * d) * RADS;
 | |
|   ls = L + (1.915 * sin(g) + .02 * sin(2 * g)) * RADS;
 | |
|   bs = 0;
 | |
|   rs = 1.00014 - .01671 * cos(g) - .00014 * cos(2 * g);
 | |
|   *lambda = ls;
 | |
|   *beta = bs;
 | |
|   *rvec = rs;
 | |
| }
 | |
| 
 | |
| /*
 | |
| this routine returns the altitude given the days since J2000.0
 | |
| the hour angle and declination of the object and the latitude
 | |
| of the observer. Used to find the Sun's altitude to put a letter
 | |
| code on the transit time, and to find the Moon's altitude at
 | |
| transit just to make sure that the Moon is visible.
 | |
| */
 | |
| double alt(double glat, double ha, double dec) {
 | |
|   return(asin(sin(dec) * sin(glat) + cos(dec) * cos(glat) * cos(ha)));
 | |
| }
 | |
| 
 | |
| /* returns an angle in degrees in the range 0 to 360 */
 | |
| double range(double x) {
 | |
|   double a, b;
 | |
|   b = x / 360;
 | |
|   a = 360 * (b - floor(b));
 | |
|   if (a < 0)
 | |
|     a = 360 + a;
 | |
|   return(a);
 | |
| }
 | |
| 
 | |
| /* returns an angle in rads in the range 0 to two pi */
 | |
| double rangerad(double x) {
 | |
|   double a, b;
 | |
|   b = x / TPI;
 | |
|   a = TPI * (b - floor(b));
 | |
|   if (a < 0)
 | |
|     a = TPI + a;
 | |
|   return(a);
 | |
| }
 | |
| 
 | |
| /*
 | |
| gets the atan2 function returning angles in the right
 | |
| order and  range
 | |
| */
 | |
| double atan22(double y, double x) {
 | |
|   double a;
 | |
| 
 | |
|   a = atan2(y, x);
 | |
|   if (a < 0) a += TPI;
 | |
|   return(a);
 | |
| }
 | |
| 
 | |
| /*
 | |
| returns mean obliquity of ecliptic in radians given days since
 | |
| J2000.0.
 | |
| */
 | |
| double epsilon(double d) {
 | |
|   double t = d/ 36525;
 | |
|   return((23.4392911111111 - (t* (46.8150 + 0.00059*t)/3600)) *RADS);
 | |
| }
 | |
| 
 | |
| /*
 | |
| replaces ecliptic coordinates with equatorial coordinates
 | |
| note: call by reference destroys original values
 | |
| R is unchanged.
 | |
| */
 | |
| void equatorial(double d, double *lon, double *lat, double * r) {
 | |
|   double  eps, ceps, seps, l, b;
 | |
|   (void)r;
 | |
| 
 | |
|   l = *lon;
 | |
|   b = * lat;
 | |
|   eps = epsilon(d);
 | |
|   ceps = cos(eps);
 | |
|   seps = sin(eps);
 | |
|   *lon = atan22(sin(l)*ceps - tan(b)*seps, cos(l));
 | |
|   *lat = asin(sin(b)*ceps + cos(b)*seps*sin(l));
 | |
| }
 | |
| 
 | |
| /*
 | |
| replaces equatorial coordinates with ecliptic ones. Inverse
 | |
| of above, but used to find topocentric ecliptic coords.
 | |
| */
 | |
| void ecliptic(double d, double *lon, double *lat, double * r) {
 | |
|   double  eps, ceps, seps, alp, dec;
 | |
|   (void)r;
 | |
| 
 | |
|   alp = *lon;
 | |
|   dec = *lat;
 | |
|   eps = epsilon(d);
 | |
|   ceps = cos(eps);
 | |
|   seps = sin(eps);
 | |
|   *lon = atan22(sin(alp)*ceps + tan(dec)*seps, cos(alp));
 | |
|   *lat = asin(sin(dec)*ceps - cos(dec)*seps*sin(alp));
 | |
| }
 | |
| 
 | |
| /*
 | |
| returns the siderial time at greenwich meridian as
 | |
| an angle in radians given the days since J2000.0
 | |
| */
 | |
| double gst( double d) {
 | |
|   double t = d / 36525;
 | |
|   double theta;
 | |
|   theta = range(280.46061837 + 360.98564736629 * d + 0.000387933 * t * t);
 | |
|   return(theta * RADS);
 | |
| }
 | |
| 
 | |
| void tmoonsub_(double *day, double *glat, double *glong, double *moonalt, 
 | |
|    double *mrv, double *l, double *b, double *paxis)
 | |
| {
 | |
|   double mlambda, mbeta;
 | |
|   double malpha, mdelta;
 | |
|   double lst, mhr;
 | |
|   double tlambda, tbeta, trv;
 | |
| 
 | |
|   lst = gst(*day) + *glong;
 | |
|       
 | |
|   /* find Moon topocentric coordinates for libration calculations */
 | |
| 
 | |
|   moonpos(*day, &mlambda, &mbeta, mrv);
 | |
|   malpha = mlambda;
 | |
|   mdelta = mbeta;
 | |
|   equatorial(*day, &malpha, &mdelta, mrv);
 | |
|   topo(lst, *glat, &malpha, &mdelta, mrv);
 | |
|   mhr = rangerad(lst - malpha);
 | |
|   *moonalt = alt(*glat, mhr, mdelta);
 | |
|       
 | |
|   /* Optical libration and Position angle of the Pole */
 | |
| 
 | |
|   tlambda = malpha;
 | |
|   tbeta = mdelta;
 | |
|   trv = *mrv;
 | |
|   ecliptic(*day, &tlambda, &tbeta, &trv);
 | |
|   libration(*day, tlambda, tbeta, malpha,  l, b, paxis);
 | |
| }
 |