mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//  (C) Copyright John Maddock 2006.
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#include <boost/math/special_functions/gamma.hpp>
 | 
						|
#include <boost/math/special_functions/erf.hpp> // for inverses
 | 
						|
#include <boost/math/constants/constants.hpp>
 | 
						|
#include <fstream>
 | 
						|
#include <boost/math/tools/test_data.hpp>
 | 
						|
#include "mp_t.hpp"
 | 
						|
 | 
						|
using namespace boost::math::tools;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
float external_f;
 | 
						|
float force_truncate(const float* f)
 | 
						|
{
 | 
						|
   external_f = *f;
 | 
						|
   return external_f;
 | 
						|
}
 | 
						|
 | 
						|
float truncate_to_float(mp_t r)
 | 
						|
{
 | 
						|
   float f = boost::math::tools::real_cast<float>(r);
 | 
						|
   return force_truncate(&f);
 | 
						|
}
 | 
						|
 | 
						|
struct erf_data_generator
 | 
						|
{
 | 
						|
   boost::math::tuple<mp_t, mp_t> operator()(mp_t z)
 | 
						|
   {
 | 
						|
      // very naively calculate spots using the gamma function at high precision:
 | 
						|
      int sign = 1;
 | 
						|
      if(z < 0)
 | 
						|
      {
 | 
						|
         sign = -1;
 | 
						|
         z = -z;
 | 
						|
      }
 | 
						|
      mp_t g1, g2;
 | 
						|
      g1 = boost::math::tgamma_lower(mp_t(0.5), z * z);
 | 
						|
      g1 /= sqrt(boost::math::constants::pi<mp_t>());
 | 
						|
      g1 *= sign;
 | 
						|
 | 
						|
      if(z < 0.5)
 | 
						|
      {
 | 
						|
         g2 = 1 - (sign * g1);
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
         g2 = boost::math::tgamma(mp_t(0.5), z * z);
 | 
						|
         g2 /= sqrt(boost::math::constants::pi<mp_t>());
 | 
						|
      }
 | 
						|
      if(sign < 1)
 | 
						|
         g2 = 2 - g2;
 | 
						|
      return boost::math::make_tuple(g1, g2);
 | 
						|
   }
 | 
						|
};
 | 
						|
 | 
						|
double double_factorial(int N)
 | 
						|
{
 | 
						|
   double result = 1;
 | 
						|
   while(N > 2)
 | 
						|
   {
 | 
						|
      N -= 2;
 | 
						|
      result *= N;
 | 
						|
   }
 | 
						|
   return result;
 | 
						|
}
 | 
						|
 | 
						|
void asymptotic_limit(int Bits)
 | 
						|
{
 | 
						|
   //
 | 
						|
   // The following block of code estimates how large z has
 | 
						|
   // to be before we can use the asymptotic expansion for
 | 
						|
   // erf/erfc and still get convergence: the series becomes
 | 
						|
   // divergent eventually so we have to be careful!
 | 
						|
   //
 | 
						|
   double result = (std::numeric_limits<double>::max)();
 | 
						|
   int terms = 0;
 | 
						|
   for(int n = 1; n < 15; ++n)
 | 
						|
   {
 | 
						|
      double lim = (Bits-n) * log(2.0) - log(sqrt(3.14)) + log(double_factorial(2*n+1));
 | 
						|
      double x = 1;
 | 
						|
      while(x*x + (2*n+1)*log(x) <= lim)
 | 
						|
         x += 0.1;
 | 
						|
      if(x < result)
 | 
						|
      {
 | 
						|
         result = x;
 | 
						|
         terms = n;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   std::cout << "Erf asymptotic limit for " 
 | 
						|
      << Bits << " bit numbers is " 
 | 
						|
      << result << " after approximately " 
 | 
						|
      << terms << " terms." << std::endl;
 | 
						|
 | 
						|
   result = (std::numeric_limits<double>::max)();
 | 
						|
   terms = 0;
 | 
						|
   for(int n = 1; n < 30; ++n)
 | 
						|
   {
 | 
						|
      double x = pow(double_factorial(2*n+1)/pow(2.0, n-Bits), 1 / (2.0*n));
 | 
						|
      if(x < result)
 | 
						|
      {
 | 
						|
         result = x;
 | 
						|
         terms = n;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   std::cout << "Erfc asymptotic limit for " 
 | 
						|
      << Bits << " bit numbers is " 
 | 
						|
      << result << " after approximately " 
 | 
						|
      << terms << " terms." << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
boost::math::tuple<mp_t, mp_t> erfc_inv(mp_t r)
 | 
						|
{
 | 
						|
   mp_t x = exp(-r * r);
 | 
						|
   x = x.convert_to<double>();
 | 
						|
   std::cout << x << "   ";
 | 
						|
   mp_t result = boost::math::erfc_inv(x);
 | 
						|
   std::cout << result << std::endl;
 | 
						|
   return boost::math::make_tuple(x, result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int main(int argc, char*argv [])
 | 
						|
{
 | 
						|
   parameter_info<mp_t> arg1;
 | 
						|
   test_data<mp_t> data;
 | 
						|
 | 
						|
   bool cont;
 | 
						|
   std::string line;
 | 
						|
 | 
						|
   if(argc >= 2)
 | 
						|
   {
 | 
						|
      if(strcmp(argv[1], "--limits") == 0)
 | 
						|
      {
 | 
						|
         asymptotic_limit(24);
 | 
						|
         asymptotic_limit(53);
 | 
						|
         asymptotic_limit(64);
 | 
						|
         asymptotic_limit(106);
 | 
						|
         asymptotic_limit(113);
 | 
						|
         return 0;
 | 
						|
      }
 | 
						|
      else if(strcmp(argv[1], "--erf_inv") == 0)
 | 
						|
      {
 | 
						|
         mp_t (*f)(mp_t);
 | 
						|
         f = boost::math::erf_inv;
 | 
						|
         std::cout << "Welcome.\n"
 | 
						|
            "This program will generate spot tests for the inverse erf function:\n";
 | 
						|
         std::cout << "Enter the number of data points: ";
 | 
						|
         int points;
 | 
						|
         std::cin >> points;
 | 
						|
         data.insert(f, make_random_param(mp_t(-1), mp_t(1), points));
 | 
						|
      }
 | 
						|
      else if(strcmp(argv[1], "--erfc_inv") == 0)
 | 
						|
      {
 | 
						|
         boost::math::tuple<mp_t, mp_t> (*f)(mp_t);
 | 
						|
         f = erfc_inv;
 | 
						|
         std::cout << "Welcome.\n"
 | 
						|
            "This program will generate spot tests for the inverse erfc function:\n";
 | 
						|
         std::cout << "Enter the maximum *result* expected from erfc_inv: ";
 | 
						|
         double max_val;
 | 
						|
         std::cin >> max_val;
 | 
						|
         std::cout << "Enter the number of data points: ";
 | 
						|
         int points;
 | 
						|
         std::cin >> points;
 | 
						|
         parameter_info<mp_t> arg = make_random_param(mp_t(0), mp_t(max_val), points);
 | 
						|
         arg.type |= dummy_param;
 | 
						|
         data.insert(f, arg);
 | 
						|
      }
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
      std::cout << "Welcome.\n"
 | 
						|
         "This program will generate spot tests for the erf and erfc functions:\n"
 | 
						|
         "  erf(z) and erfc(z)\n\n";
 | 
						|
 | 
						|
      do{
 | 
						|
         if(0 == get_user_parameter_info(arg1, "a"))
 | 
						|
            return 1;
 | 
						|
         data.insert(erf_data_generator(), arg1);
 | 
						|
 | 
						|
         std::cout << "Any more data [y/n]?";
 | 
						|
         std::getline(std::cin, line);
 | 
						|
         boost::algorithm::trim(line);
 | 
						|
         cont = (line == "y");
 | 
						|
      }while(cont);
 | 
						|
   }
 | 
						|
 | 
						|
   std::cout << "Enter name of test data file [default=erf_data.ipp]";
 | 
						|
   std::getline(std::cin, line);
 | 
						|
   boost::algorithm::trim(line);
 | 
						|
   if(line == "")
 | 
						|
      line = "erf_data.ipp";
 | 
						|
   std::ofstream ofs(line.c_str());
 | 
						|
   ofs << std::scientific << std::setprecision(40);
 | 
						|
   write_code(ofs, data, "erf_data");
 | 
						|
   
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Output for asymptotic limits:
 | 
						|
 | 
						|
Erf asymptotic limit for 24 bit numbers is 2.8 after approximately 6 terms.
 | 
						|
Erfc asymptotic limit for 24 bit numbers is 4.12064 after approximately 17 terms.
 | 
						|
Erf asymptotic limit for 53 bit numbers is 4.3 after approximately 11 terms.
 | 
						|
Erfc asymptotic limit for 53 bit numbers is 6.19035 after approximately 29 terms.
 | 
						|
Erf asymptotic limit for 64 bit numbers is 4.8 after approximately 12 terms.
 | 
						|
Erfc asymptotic limit for 64 bit numbers is 7.06004 after approximately 29 terms.
 | 
						|
Erf asymptotic limit for 106 bit numbers is 6.5 after approximately 14 terms.
 | 
						|
Erfc asymptotic limit for 106 bit numbers is 11.6626 after approximately 29 terms.
 | 
						|
Erf asymptotic limit for 113 bit numbers is 6.8 after approximately 14 terms.
 | 
						|
Erfc asymptotic limit for 113 bit numbers is 12.6802 after approximately 29 terms.
 | 
						|
*/
 | 
						|
 |