mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	Removed superfluous "#ifdef Win32" in jtaudio.c. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/trunk@67 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			118 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
|       subroutine syncf1(data,jz,jstart,f0,NFreeze,DFTolerance,smax,red)
 | |
| 
 | |
| C  Does 16k FFTs of data with stepsize 15360, using only "sync on" intervals.
 | |
| C  Returns a refined value of f0, the sync-tone frequency.
 | |
| 
 | |
|       parameter (NFFT=16384)
 | |
|       parameter (NH=NFFT/2)
 | |
|       parameter (NQ=NFFT/4)
 | |
|       parameter (NB3=3*512)
 | |
|       real data(jz)                          !Raw data
 | |
|       integer DFTolerance
 | |
|       real x(NFFT)
 | |
|       real red(512)
 | |
|       real s(NQ)     !Ref spectrum for flattening and birdie-zapping
 | |
| 
 | |
|       complex c(0:NH)
 | |
|       complex z
 | |
|       equivalence (x,c)
 | |
| 
 | |
|       ps(z)=real(z)**2 + imag(z)**2          !Power spectrum ASF
 | |
| 
 | |
| C  Accumulate a high-resolution average spectrum
 | |
|       df=11025.0/NFFT
 | |
|       jstep=10*NB3
 | |
|       nz=(jz-jstart)/jstep -1
 | |
|       call zero(s,NQ)
 | |
|       do n=1,nz
 | |
|          call zero(x,NFFT)
 | |
|          k=(n-1)*jstep
 | |
|          do i=1,10
 | |
|             j=(i-1)*NB3 + 1
 | |
|             call move(data(jstart+k+j),x(j),512)
 | |
|          enddo
 | |
|          call xfft(x,NFFT)
 | |
|          do i=1,NQ
 | |
|             x(i)=ps(c(i))
 | |
|          enddo
 | |
|          call add(s,x,s,NQ)
 | |
|       enddo
 | |
| 
 | |
|       fac=(1.0/NFFT)**2
 | |
|       do i=1,NQ                                !Normalize
 | |
|          s(i)=fac*s(i)
 | |
|       enddo
 | |
|       call smooth(s,NQ)
 | |
| 
 | |
| C  NB: could also compute a "blue" spectrum, using the sync-off intervals.
 | |
|       n8=NQ/8
 | |
|       do i=1,n8
 | |
|          red(i)=0.
 | |
|          do k=8*i-7,8*i
 | |
|             red(i)=red(i)+s(k)
 | |
|          enddo
 | |
|          red(i)=10.0*red(i)/(8.0*nz)
 | |
|       enddo
 | |
| 
 | |
| 
 | |
|       dftol=min(DFTolerance,25)
 | |
|       if(nfreeze.eq.1) dftol=DFTolerance
 | |
| C  Find improved value for f0
 | |
|       smax=0.
 | |
|       ia=(f0-dftol)/df
 | |
|       ib=(f0+dftol)/df + 0.999
 | |
| !      if(NFreeze.eq.1) then
 | |
| !         ia=(f0-5.)/df
 | |
| !         ib=(f0+5.)/df
 | |
| !      endif
 | |
|       do i=ia,ib
 | |
|          if(s(i).gt.smax) then
 | |
|             smax=s(i)
 | |
|             ipk=i
 | |
|          endif
 | |
|       enddo
 | |
|       f0=ipk*df
 | |
| 
 | |
| C  Remove line at f0 from spectrum -- if it's strong enough.
 | |
|       ia=(f0-150)/df
 | |
|       ib=(f0+150)/df
 | |
|       a1=0.
 | |
|       a2=0.
 | |
|       nsum=50
 | |
|       do i=1,nsum
 | |
|          a1=a1+s(ia-i)
 | |
|          a2=a2+s(ib+i)
 | |
|       enddo
 | |
|       a1=a1/nsum
 | |
|       a2=a2/nsum
 | |
|       smax=2.0*smax/(a1+a2)
 | |
| 
 | |
|       if(smax.gt.3.0) then
 | |
|          b=(a2-a1)/(ib-ia)
 | |
|          do i=ia,ib
 | |
|             s(i)=a1 + (i-ia)*b
 | |
|          enddo
 | |
|       endif
 | |
| 
 | |
| C  Make a smoothed version of the spectrum.
 | |
|       nsum=50
 | |
|       fac=1./(2*nsum+1)
 | |
|       call zero(x,nsum)
 | |
|       call zero(s,50)
 | |
|       call zero(s(NQ-nsum),nsum)
 | |
|       sum=0.
 | |
|       do i=nsum+1,NQ-nsum
 | |
|          sum=sum+s(i+nsum)-s(i-nsum)
 | |
|          x(i)=fac*sum
 | |
|       enddo
 | |
|       call zero(x(NQ-nsum),nsum+1)
 | |
| 
 | |
| C  To zap birdies, compare s(i) and x(i).  If s(i) is larger by more
 | |
| C  than some limit, replace x(i) by s(i).  That will put narrow birdies
 | |
| C  on top of the smoothed spectrum.
 | |
| 
 | |
|       call move(x,s,NQ)                 !Copy smoothed spectrum into s
 | |
| 
 | |
|       return
 | |
|       end
 |