mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			916 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Paul A. Bristow 2015
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Comparison of finding roots using TOMS748, Newton-Raphson, Schroder & Halley algorithms.
 | |
| 
 | |
| // Note that this file contains Quickbook mark-up as well as code
 | |
| // and comments, don't change any of the special comment mark-ups!
 | |
| 
 | |
| // root_finding_algorithms.cpp
 | |
| 
 | |
| #include <boost/cstdlib.hpp>
 | |
| #include <boost/config.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include <boost/type_traits/is_floating_point.hpp>
 | |
| 
 | |
| #include "table_type.hpp"
 | |
| // Copy of i:\modular-boost\libs\math\test\table_type.hpp
 | |
| // #include "handle_test_result.hpp"
 | |
| // Copy of i:\modular - boost\libs\math\test\handle_test_result.hpp
 | |
| 
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| //using boost::math::policies::policy;
 | |
| //using boost::math::tools::newton_raphson_iterate;
 | |
| //using boost::math::tools::halley_iterate; //
 | |
| //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
 | |
| //using boost::math::tools::bracket_and_solve_root;
 | |
| //using boost::math::tools::toms748_solve;
 | |
| //using boost::math::tools::schroder_iterate;
 | |
| 
 | |
| #include <boost/math/special_functions/next.hpp> // For float_distance.
 | |
| #include <tuple> // for tuple and make_tuple.
 | |
| #include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.
 | |
| 
 | |
| #include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
 | |
| //#include <boost/multiprecision/cpp_dec_float.hpp> // is decimal.
 | |
| using boost::multiprecision::cpp_bin_float_100;
 | |
| using boost::multiprecision::cpp_bin_float_50;
 | |
| 
 | |
| #include <boost/timer/timer.hpp>
 | |
| #include <boost/system/error_code.hpp>
 | |
| #include <boost/multiprecision/cpp_bin_float/io.hpp>
 | |
| #include <boost/preprocessor/stringize.hpp>
 | |
| 
 | |
| // STL
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <limits>
 | |
| #include <fstream> // std::ofstream
 | |
| #include <cmath>
 | |
| #include <typeinfo> // for type name using typid(thingy).name();
 | |
| 
 | |
| #ifndef BOOST_ROOT
 | |
| # define BOOST_ROOT i:/modular-boost/
 | |
| #endif
 | |
| // Need to find this 
 | |
| 
 | |
| #ifdef __FILE__
 | |
| std::string sourcefilename = __FILE__;
 | |
| #endif
 | |
| 
 | |
| std::string chop_last(std::string s)
 | |
| {
 | |
|    std::string::size_type pos = s.find_last_of("\\/");
 | |
|    if(pos != std::string::npos)
 | |
|       s.erase(pos);
 | |
|    else if(s.empty())
 | |
|       abort();
 | |
|    else
 | |
|       s.erase();
 | |
|    return s;
 | |
| }
 | |
| 
 | |
| std::string make_root()
 | |
| {
 | |
|    std::string result;
 | |
|    if(sourcefilename.find_first_of(":") != std::string::npos)
 | |
|    {
 | |
|       result = chop_last(sourcefilename); // lose filename part
 | |
|       result = chop_last(result);   // lose /example/
 | |
|       result = chop_last(result);   // lose /math/
 | |
|       result = chop_last(result);   // lose /libs/
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       result = chop_last(sourcefilename); // lose filename part
 | |
|       if(result.empty())
 | |
|          result = ".";
 | |
|       result += "/../../..";
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| std::string short_file_name(std::string s)
 | |
| {
 | |
|    std::string::size_type pos = s.find_last_of("\\/");
 | |
|    if(pos != std::string::npos)
 | |
|       s.erase(0, pos + 1);
 | |
|    return s;
 | |
| }
 | |
| 
 | |
| std::string boost_root = make_root();
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|   std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_msvc.qbk");
 | |
| #else // assume GCC
 | |
|   std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_gcc.qbk");
 | |
| #endif
 | |
| 
 | |
| std::ofstream fout (filename.c_str(), std::ios_base::out);
 | |
| 
 | |
| //std::array<std::string, 6> float_type_names =
 | |
| //{
 | |
| //  "float", "double", "long double", "cpp_bin_128", "cpp_dec_50", "cpp_dec_100"
 | |
| //};
 | |
| 
 | |
| std::vector<std::string> algo_names =
 | |
| {
 | |
|   "cbrt", "TOMS748", "Newton", "Halley", "Schr'''ö'''der"
 | |
| };
 | |
| 
 | |
| std::vector<int> max_digits10s;
 | |
| std::vector<std::string> typenames; // Full computer generated type name.
 | |
| std::vector<std::string> names; // short name.
 | |
| 
 | |
| uintmax_t iters; // Global as iterations is not returned by rooting function.
 | |
| 
 | |
| const int convert = 1000; // convert nanoseconds to microseconds (assuming this is resolution).
 | |
| 
 | |
| const int count = 1000000; // Number of iterations to average.
 | |
|  
 | |
| struct root_info
 | |
| { // for a floating-point type, float, double ...
 | |
|   std::size_t max_digits10; // for type.
 | |
|   std::string full_typename; // for type from type_id.name().
 | |
|   std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
 | |
| 
 | |
|   std::size_t bin_digits;  // binary in floating-point type numeric_limits<T>::digits;  
 | |
|   int get_digits; // fraction of maximum possible accuracy required.
 | |
|   // = digits * digits_accuracy
 | |
|   // Vector of values for each algorithm, std::cbrt, boost::math::cbrt, TOMS748, Newton, Halley.
 | |
|   //std::vector< boost::int_least64_t> times;  converted to int.
 | |
|   std::vector<int> times;
 | |
|   //boost::int_least64_t min_time = std::numeric_limits<boost::int_least64_t>::max(); // Used to normalize times (as int).
 | |
|   std::vector<double> normed_times;
 | |
|   boost::int_least64_t min_time = (std::numeric_limits<boost::int_least64_t>::max)(); // Used to normalize times.
 | |
|   std::vector<uintmax_t> iterations;
 | |
|   std::vector<long int> distances;
 | |
|   std::vector<cpp_bin_float_100> full_results;
 | |
| }; // struct root_info
 | |
| 
 | |
| std::vector<root_info> root_infos;  // One element for each type used.
 | |
| 
 | |
| int type_no = -1; // float = 0, double = 1, ... indexing root_infos.
 | |
| 
 | |
| inline std::string build_test_name(const char* type_name, const char* test_name)
 | |
| {
 | |
|   std::string result(BOOST_COMPILER);
 | |
|   result += "|";
 | |
|   result += BOOST_STDLIB;
 | |
|   result += "|";
 | |
|   result += BOOST_PLATFORM;
 | |
|   result += "|";
 | |
|   result += type_name;
 | |
|   result += "|";
 | |
|   result += test_name;
 | |
| #if defined(_DEBUG ) || !defined(NDEBUG)
 | |
|   result += "|";
 | |
|   result += " debug";
 | |
| #else
 | |
|   result += "|";
 | |
|   result += " release";
 | |
| #endif
 | |
|   result += "|";
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // No derivatives - using TOMS748 internally.
 | |
| template <class T>
 | |
| struct cbrt_functor_noderiv
 | |
| { //  cube root of x using only function - no derivatives.
 | |
|   cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
 | |
|   { // Constructor just stores value a to find root of.
 | |
|   }
 | |
|   T operator()(T const& x)
 | |
|   {
 | |
|     T fx = x*x*x - a; // Difference (estimate x^3 - a).
 | |
|     return fx;
 | |
|   }
 | |
| private:
 | |
|   T a; // to be 'cube_rooted'.
 | |
| }; // template <class T> struct cbrt_functor_noderiv
 | |
| 
 | |
| template <class T>
 | |
| T cbrt_noderiv(T x)
 | |
| { // return cube root of x using bracket_and_solve (using NO derivatives).
 | |
|   using namespace std;  // Help ADL of std functions.
 | |
|   using namespace boost::math::tools; // For bracket_and_solve_root.
 | |
| 
 | |
|   // Maybe guess should be double, or use enable_if to avoid warning about conversion double to float here?
 | |
|   T guess;
 | |
|   if (boost::is_fundamental<T>::value)
 | |
|   { 
 | |
|     int exponent;
 | |
|     frexp(x, &exponent); // Get exponent of z (ignore mantissa).
 | |
|     guess = ldexp((T)1., exponent / 3); // Rough guess is to divide the exponent by three.
 | |
|   }
 | |
|   else
 | |
|   { // (boost::is_class<T>)
 | |
|     double dx = static_cast<double>(x);
 | |
|     guess = boost::math::cbrt<T>(dx); // Get guess using double.
 | |
|   }
 | |
|   
 | |
|   T factor = 2; // How big steps to take when searching.
 | |
| 
 | |
|   const boost::uintmax_t maxit = 50; // Limit to maximum iterations.
 | |
|   boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
 | |
|   bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
 | |
|   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   // Some fraction of digits is used to control how accurate to try to make the result.
 | |
|   int get_digits = static_cast<int>(std::numeric_limits<T>::digits - 2);
 | |
| 
 | |
|   eps_tolerance<T> tol(get_digits); // Set the tolerance.
 | |
|   std::pair<T, T> r =
 | |
|     bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
 | |
|   iters = it;
 | |
|   T result = r.first + (r.second - r.first) / 2;  // Midway between brackets.
 | |
|   return result;
 | |
| } // template <class T> T cbrt_noderiv(T x)
 | |
| 
 | |
| 
 | |
| // Using 1st derivative only Newton-Raphson
 | |
| 
 | |
| template <class T>
 | |
| struct cbrt_functor_deriv
 | |
| { // Functor also returning 1st derviative.
 | |
|   cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
 | |
|   { // Constructor stores value a to find root of,
 | |
|     // for example: calling cbrt_functor_deriv<T>(x) to use to get cube root of x.
 | |
|   }
 | |
|   std::pair<T, T> operator()(T const& x)
 | |
|   { // Return both f(x) and f'(x).
 | |
|     T fx = x*x*x - a; // Difference (estimate x^3 - value).
 | |
|     T dx = 3 * x*x; // 1st derivative = 3x^2.
 | |
|     return std::make_pair(fx, dx); // 'return' both fx and dx.
 | |
|   }
 | |
| private:
 | |
|   T a; // to be 'cube_rooted'.
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| T cbrt_deriv(T x)
 | |
| { // return cube root of x using 1st derivative and Newton_Raphson.
 | |
|   using namespace boost::math::tools;
 | |
|   int exponent;
 | |
|   T guess;
 | |
|   if(boost::is_fundamental<T>::value)
 | |
|   {
 | |
|      frexp(x, &exponent); // Get exponent of z (ignore mantissa).
 | |
|      guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
 | |
|   }
 | |
|   else
 | |
|      guess = boost::math::cbrt(static_cast<double>(x));
 | |
|   T min = guess / 2; // Minimum possible value is half our guess.
 | |
|   T max = 2 * guess; // Maximum possible value is twice our guess.
 | |
|   const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
 | |
|   const boost::uintmax_t maxit = 20;
 | |
|   boost::uintmax_t it = maxit;
 | |
|   T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
 | |
|   iters = it;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // Using 1st and 2nd derivatives with Halley algorithm.
 | |
| 
 | |
| template <class T>
 | |
| struct cbrt_functor_2deriv
 | |
| { // Functor returning both 1st and 2nd derivatives.
 | |
|   cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
 | |
|   { // Constructor stores value a to find root of, for example:
 | |
|     // calling cbrt_functor_2deriv<T>(x) to get cube root of x,
 | |
|   }
 | |
|   std::tuple<T, T, T> operator()(T const& x)
 | |
|   { // Return both f(x) and f'(x) and f''(x).
 | |
|     T fx = x*x*x - a; // Difference (estimate x^3 - value).
 | |
|     T dx = 3 * x*x; // 1st derivative = 3x^2.
 | |
|     T d2x = 6 * x; // 2nd derivative = 6x.
 | |
|     return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
 | |
|   }
 | |
| private:
 | |
|   T a; // to be 'cube_rooted'.
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| T cbrt_2deriv(T x)
 | |
| { // return cube root of x using 1st and 2nd derivatives and Halley.
 | |
|   //using namespace std;  // Help ADL of std functions.
 | |
|   using namespace boost::math::tools;
 | |
|   int exponent;
 | |
|   T guess;
 | |
|   if(boost::is_fundamental<T>::value)
 | |
|   {
 | |
|      frexp(x, &exponent); // Get exponent of z (ignore mantissa).
 | |
|      guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
 | |
|   }
 | |
|   else
 | |
|      guess = boost::math::cbrt(static_cast<double>(x));
 | |
|   T min = guess / 2; // Minimum possible value is half our guess.
 | |
|   T max = 2 * guess; // Maximum possible value is twice our guess.
 | |
|   const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   // digits used to control how accurate to try to make the result.
 | |
|   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
 | |
|   boost::uintmax_t maxit = 20;
 | |
|   boost::uintmax_t it = maxit;
 | |
|   T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, it);
 | |
|   iters = it;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // Using 1st and 2nd derivatives using Schroder algorithm.
 | |
| 
 | |
| template <class T>
 | |
| T cbrt_2deriv_s(T x)
 | |
| { // return cube root of x using 1st and 2nd derivatives and Schroder algorithm.
 | |
|   //using namespace std;  // Help ADL of std functions.
 | |
|   using namespace boost::math::tools;
 | |
|   int exponent;
 | |
|   T guess;
 | |
|   if(boost::is_fundamental<T>::value)
 | |
|   {
 | |
|      frexp(x, &exponent); // Get exponent of z (ignore mantissa).
 | |
|      guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
 | |
|   }
 | |
|   else
 | |
|      guess = boost::math::cbrt(static_cast<double>(x));
 | |
|   T min = guess / 2; // Minimum possible value is half our guess.
 | |
|   T max = 2 * guess; // Maximum possible value is twice our guess.
 | |
|   const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   // digits used to control how accurate to try to make the result.
 | |
|   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
 | |
|   const boost::uintmax_t maxit = 20;
 | |
|   boost::uintmax_t it = maxit;
 | |
|   T result = schroder_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, it);
 | |
|   iters = it;
 | |
|   return result;
 | |
| } // template <class T> T cbrt_2deriv_s(T x)
 | |
| 
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| int test_root(cpp_bin_float_100 big_value, cpp_bin_float_100 answer, const char* type_name)
 | |
| {
 | |
|   //T value = 28.; // integer (exactly representable as floating-point)
 | |
|   // whose cube root is *not* exactly representable.
 | |
|   // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
 | |
|   // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895
 | |
|   
 | |
|   std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000;
 | |
|   // For new versions use max_digits10
 | |
|   // std::cout.precision(std::numeric_limits<T>::max_digits10);
 | |
|   std::cout.precision(max_digits);
 | |
|   std::cout << std::showpoint << std::endl; // Trailing zeros too.
 | |
| 
 | |
|   root_infos.push_back(root_info());
 | |
|   type_no++;  // Another type.
 | |
| 
 | |
|   root_infos[type_no].max_digits10 = max_digits;
 | |
|   root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
 | |
|   root_infos[type_no].short_typename = type_name; // Short typename.
 | |
| 
 | |
|   root_infos[type_no].bin_digits = std::numeric_limits<T>::digits;
 | |
| 
 | |
|   root_infos[type_no].get_digits = std::numeric_limits<T>::digits;
 | |
| 
 | |
|   T to_root = static_cast<T>(big_value);
 | |
|   T result; // root
 | |
|   T ans = static_cast<T>(answer);
 | |
|   int algo = 0; // Count of algorithms used.
 | |
|  
 | |
|   using boost::timer::nanosecond_type;
 | |
|   using boost::timer::cpu_times;
 | |
|   using boost::timer::cpu_timer;
 | |
| 
 | |
|   cpu_times now; // Holds wall, user and system times.
 | |
|   T sum = 0;
 | |
| 
 | |
|   // std::cbrt is much the fastest, but not useful for this comparison because it only handles fundamental types.
 | |
|   // Using enable_if allows us to avoid a compile fail with multiprecision types, but still distorts the results too much.
 | |
| 
 | |
|   //{
 | |
|   //  algorithm_names.push_back("std::cbrt"); 
 | |
|   //  cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|   //  ti.start();
 | |
|   //  for (long i = 0; i < count; ++i)
 | |
|   //  {
 | |
|   //    stdcbrt(big_value);
 | |
|   //  }
 | |
|   //  now = ti.elapsed();
 | |
|   //  int time = static_cast<int>(now.user / count);
 | |
|   //  root_infos[type_no].times.push_back(time); // CPU time taken per root.
 | |
|   //  if (time < root_infos[type_no].min_time)
 | |
|   //  {
 | |
|   //    root_infos[type_no].min_time = time;
 | |
|   //  }
 | |
|   //  ti.stop();
 | |
|   //  long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|   //  root_infos[type_no].distances.push_back(distance);
 | |
|   //  root_infos[type_no].iterations.push_back(0); // Not known.
 | |
|   //  root_infos[type_no].full_results.push_back(result);
 | |
|   //  algo++;
 | |
|   //}
 | |
|   //{
 | |
|   //  //algorithm_names.push_back("boost::math::cbrt"); // .
 | |
|   //  cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|   //  ti.start();
 | |
|   //  for (long i = 0; i < count; ++i)
 | |
|   //  {
 | |
|   //    result = boost::math::cbrt(to_root); // 
 | |
|   //  }
 | |
|   //  now = ti.elapsed();
 | |
|   //  int time = static_cast<int>(now.user / count);
 | |
|   //  root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|   //  ti.stop();
 | |
|   //  if (time < root_infos[type_no].min_time)
 | |
|   //  {
 | |
|   //    root_infos[type_no].min_time = time;
 | |
|   //  }
 | |
|   //  long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|   //  root_infos[type_no].distances.push_back(distance);
 | |
|   //  root_infos[type_no].iterations.push_back(0); // Iterations not knowable.
 | |
|   //  root_infos[type_no].full_results.push_back(result);
 | |
|   //}
 | |
| 
 | |
| 
 | |
| 
 | |
|   {
 | |
|     //algorithm_names.push_back("boost::math::cbrt"); // .
 | |
|     result = 0;
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for (long i = 0; i < count; ++i)
 | |
|     {
 | |
|       result = boost::math::cbrt(to_root); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
|     boost:int_least64_t n = now.user;
 | |
| 
 | |
|     long time = static_cast<long>(now.user/1000); // convert nanoseconds to microseconds (assuming this is resolution).
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     ti.stop();
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(0); // Iterations not knowable.
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   {
 | |
|     //algorithm_names.push_back("TOMS748"); // 
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for (long i = 0; i < count; ++i)
 | |
|     {
 | |
|       result = cbrt_noderiv<T>(to_root); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
| //    int time = static_cast<int>(now.user / count);
 | |
|     long time = static_cast<long>(now.user/1000);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     ti.stop();
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); // 
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   {
 | |
|    // algorithm_names.push_back("Newton"); // algorithm
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for (long i = 0; i < count; ++i)
 | |
|     {
 | |
|       result = cbrt_deriv(to_root); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
| //    int time = static_cast<int>(now.user / count);
 | |
|     long time = static_cast<long>(now.user/1000);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
| 
 | |
|     ti.stop();
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); //
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   {
 | |
|   //algorithm_names.push_back("Halley"); // algorithm
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for (long i = 0; i < count; ++i)
 | |
|     {
 | |
|       result = cbrt_2deriv(to_root); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed(); 
 | |
| //    int time = static_cast<int>(now.user / count);
 | |
|     long time = static_cast<long>(now.user/1000);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     ti.stop();
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); // 
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|    // algorithm_names.push_back("Shroeder"); // algorithm
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for (long i = 0; i < count; ++i)
 | |
|     {
 | |
|       result = cbrt_2deriv_s(to_root); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
| //    int time = static_cast<int>(now.user / count);
 | |
|     long time = static_cast<long>(now.user/1000);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     ti.stop();
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); // 
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   for (size_t i = 0; i != root_infos[type_no].times.size(); i++)
 | |
|   { // Normalize times.
 | |
|     double normed_time = static_cast<double>(root_infos[type_no].times[i]);
 | |
|     normed_time /= root_infos[type_no].min_time;
 | |
|     root_infos[type_no].normed_times.push_back(normed_time);
 | |
|   }
 | |
|   algo++;
 | |
|   std::cout << "Accumulated sum was " << sum << std::endl;
 | |
|   return algo;  // Count of how many algorithms used.
 | |
| } // test_root
 | |
| 
 | |
| void table_root_info(cpp_bin_float_100 full_value, cpp_bin_float_100 full_answer)
 | |
| {
 | |
|    // Fill the elements. 
 | |
|   int type_count = 0;
 | |
|   type_count = test_root<float>(full_value, full_answer, "float");
 | |
|   type_count = test_root<double>(full_value, full_answer, "double");
 | |
|   type_count = test_root<long double>(full_value, full_answer, "long double");
 | |
|   type_count = test_root<cpp_bin_float_50>(full_value, full_answer, "cpp_bin_float_50");
 | |
|   //type_count = test_root<cpp_bin_float_100>(full_value, full_answer, "cpp_bin_float_100");
 | |
| 
 | |
|   std::cout << root_infos.size() << " floating-point types tested:" << std::endl;
 | |
| #ifndef NDEBUG
 | |
|   std::cout << "Compiled in debug mode." << std::endl;
 | |
| #else
 | |
|   std::cout << "Compiled in optimise mode." << std::endl;
 | |
| #endif
 | |
| 
 | |
| 
 | |
|   for (size_t tp = 0; tp != root_infos.size(); tp++)
 | |
|   { // For all types:
 | |
| 
 | |
|     std::cout << std::endl;
 | |
| 
 | |
|     std::cout << "Floating-point type = " << root_infos[tp].short_typename << std::endl;
 | |
|     std::cout << "Floating-point type = " << root_infos[tp].full_typename << std::endl;
 | |
|     std::cout << "Max_digits10 = " << root_infos[tp].max_digits10 << std::endl;
 | |
|     std::cout << "Binary digits = " << root_infos[tp].bin_digits << std::endl;
 | |
|     std::cout << "Accuracy digits = " << root_infos[tp].get_digits - 2 << ", " << static_cast<int>(root_infos[tp].get_digits * 0.6) << ", " << static_cast<int>(root_infos[tp].get_digits * 0.4) << std::endl;
 | |
|     std::cout << "min_time = " << root_infos[tp].min_time << std::endl;
 | |
| 
 | |
|     std::cout << std::setprecision(root_infos[tp].max_digits10 ) << "Roots = ";
 | |
|     std::copy(root_infos[tp].full_results.begin(), root_infos[tp].full_results.end(), std::ostream_iterator<cpp_bin_float_100>(std::cout, " "));
 | |
|     std::cout << std::endl;
 | |
| 
 | |
|     // Header row.
 | |
|     std::cout << "Algorithm         " << "Iterations  " << "Times  " << "Norm_times  " << "Distance" << std::endl;
 | |
|     std::vector<std::string>::iterator al_iter = algo_names.begin();
 | |
| 
 | |
|     // Row for all algorithms.
 | |
|     for (int algo = 0; algo != algo_names.size(); algo++)
 | |
|     { 
 | |
|       std::cout
 | |
|         << std::left << std::setw(20) << algo_names[algo] << "  "
 | |
|         << std::setw(8) << std::setprecision(2) << root_infos[tp].iterations[algo] << "  "
 | |
|         << std::setw(8) << std::setprecision(5) << root_infos[tp].times[algo] << " "
 | |
|         << std::setw(8) << std::setprecision(3) << root_infos[tp].normed_times[algo] << " "
 | |
|         << std::setw(8) << std::setprecision(2) << root_infos[tp].distances[algo]
 | |
|         << std::endl;
 | |
|     } // for algo
 | |
|   } // for tp
 | |
| 
 | |
|   // Print info as Quickbook table.
 | |
| #if 0
 | |
|   fout << "[table:cbrt_5  Info for float, double, long double and cpp_bin_float_50\n"
 | |
|     << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.
 | |
| 
 | |
|   for (size_t tp = 0; tp != root_infos.size(); tp++)
 | |
|   { // For all types:
 | |
|     fout << "["
 | |
|      <<  "[" << root_infos[tp].short_typename << "]" 
 | |
|       << "[" << root_infos[tp].max_digits10 << "]"  // max_digits10
 | |
|       << "["  << root_infos[tp].bin_digits << "]"// < "Binary digits 
 | |
|       << "["  << root_infos[tp].get_digits << "]]\n"; // Accuracy digits.
 | |
|   } // tp
 | |
|   fout << "] [/table cbrt_5] \n" << std::endl;
 | |
| #endif
 | |
|   // Prepare Quickbook table of floating-point types.
 | |
|   fout << "[table:cbrt_4 Cube root(28) for float, double, long double and cpp_bin_float_50\n"
 | |
|     << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n"
 | |
|     << "[[Algorithm]"; 
 | |
|   for (size_t tp = 0; tp != root_infos.size(); tp++)
 | |
|   { // For all types:
 | |
|     fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]";
 | |
|   }
 | |
|   fout << "]" << std::endl;
 | |
| 
 | |
|   // Row for all algorithms.
 | |
|   for (int algo = 0; algo != algo_names.size(); algo++)
 | |
|   {
 | |
|     fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]";
 | |
|     for (size_t tp = 0; tp != root_infos.size(); tp++)
 | |
|     { // For all types:
 | |
| 
 | |
|        fout
 | |
|           << "[" << std::right << std::showpoint
 | |
|           << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "]["
 | |
|           << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "][";
 | |
|        if(fabs(root_infos[tp].normed_times[algo]) <= 1.05)
 | |
|           fout << "[role blue " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]";
 | |
|        else if(fabs(root_infos[tp].normed_times[algo]) > 4)
 | |
|           fout << "[role red " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]";
 | |
|        else
 | |
|           fout << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo];
 | |
|        fout
 | |
|         << "]["
 | |
|         << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]";
 | |
|     } // tp
 | |
|      fout <<"]" << std::endl;
 | |
|   } // for algo
 | |
|   fout << "] [/end of table cbrt_4]\n";
 | |
| } // void table_root_info
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   using namespace boost::multiprecision;
 | |
|   using namespace boost::math;
 | |
|  
 | |
|   try
 | |
|   {
 | |
|     std::cout << "Tests run with " << BOOST_COMPILER << ", "
 | |
|       << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", ";
 | |
| 
 | |
|     if (fout.is_open())
 | |
|     {
 | |
|       std::cout << "\nOutput to " << filename << std::endl;
 | |
|     }
 | |
|     else
 | |
|     { // Failed to open.
 | |
|       std::cout << " Open file " << filename << " for output failed!" << std::endl;
 | |
|       std::cout << "error" << errno << std::endl;
 | |
|       return boost::exit_failure;
 | |
|     }
 | |
| 
 | |
|     fout <<
 | |
|       "[/""\n"
 | |
|       "Copyright 2015 Paul A. Bristow.""\n"
 | |
|       "Copyright 2015 John Maddock.""\n"
 | |
|       "Distributed under the Boost Software License, Version 1.0.""\n"
 | |
|       "(See accompanying file LICENSE_1_0.txt or copy at""\n"
 | |
|       "http://www.boost.org/LICENSE_1_0.txt).""\n"
 | |
|       "]""\n"
 | |
|       << std::endl;
 | |
|     std::string debug_or_optimize;
 | |
| #ifdef _DEBUG
 | |
| #if (_DEBUG == 0)
 | |
|     debug_or_optimize = "Compiled in debug mode.";
 | |
| #else
 | |
|     debug_or_optimize = "Compiled in optimise mode.";
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     // Print out the program/compiler/stdlib/platform names as a Quickbook comment:
 | |
|     fout << "\n[h5 Program " << short_file_name(sourcefilename) << ", "
 | |
|       << BOOST_COMPILER << ", "
 | |
|       << BOOST_STDLIB << ", "
 | |
|       << BOOST_PLATFORM << (sizeof(void*) == 8 ? ", x64" : ", x86")
 | |
|       << debug_or_optimize << "[br]"
 | |
|       << count << " evaluations of each of " << algo_names.size() << " root_finding algorithms."
 | |
|       << "]"
 | |
|       << std::endl;
 | |
|     
 | |
|     std::cout << count << " evaluations of root_finding." << std::endl;
 | |
| 
 | |
|     BOOST_MATH_CONTROL_FP;
 | |
| 
 | |
|     cpp_bin_float_100 full_value("28");
 | |
| 
 | |
|     cpp_bin_float_100 full_answer ("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");
 | |
| 
 | |
|     std::copy(max_digits10s.begin(), max_digits10s.end(), std::ostream_iterator<int>(std::cout, " "));
 | |
|     std::cout << std::endl;
 | |
| 
 | |
|     table_root_info(full_value, full_answer);
 | |
| 
 | |
| 
 | |
|     return boost::exit_success;
 | |
|   }
 | |
|   catch (std::exception ex)
 | |
|   {
 | |
|     std::cout << "exception thrown: " << ex.what() << std::endl;
 | |
|     return boost::exit_failure;
 | |
|   }
 | |
| } // int main()
 | |
| 
 | |
| /*
 | |
| debug
 | |
| 
 | |
| 1>  float, maxdigits10 = 9
 | |
| 1>  6 algorithms used.
 | |
| 1>  Digits required = 24.0000000
 | |
| 1>  find root of 28.0000000, expected answer = 3.03658897
 | |
| 1>  Times 156 312 18750 4375 3437 3906
 | |
| 1>  Iterations: 0 0 8 6 4 5
 | |
| 1>  Distance: 0 0 -1 0 0 0
 | |
| 1>  Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
 | |
| 
 | |
| release
 | |
| 
 | |
| 1>  float, maxdigits10 = 9
 | |
| 1>  6 algorithms used.
 | |
| 1>  Digits required = 24.0000000
 | |
| 1>  find root of 28.0000000, expected answer = 3.03658897
 | |
| 1>  Times 0 312 6875 937 937 937
 | |
| 1>  Iterations: 0 0 8 6 4 5
 | |
| 1>  Distance: 0 0 -1 0 0 0
 | |
| 1>  Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
 | |
| 
 | |
| 
 | |
| 1>
 | |
| 1>  5 algorithms used:
 | |
| 1>  10 algorithms used:
 | |
| 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
 | |
| 1>  2 types compared.
 | |
| 1>  Precision of full type = 102 decimal digits
 | |
| 1>  Find root of 28.000000000000000,
 | |
| 1>  Expected answer = 3.0365889718756625
 | |
| 1>  typeid(T).name()float, maxdigits10 = 9
 | |
| 1>  find root of 28.0000000, expected answer = 3.03658897
 | |
| 1>
 | |
| 1>  Iterations: 0 8 6 4 5
 | |
| 1>  Times 468 8437 4375 3593 4062
 | |
| 1>  Min Time 468
 | |
| 1>  Normalized Times 1.00 18.0 9.35 7.68 8.68
 | |
| 1>  Distance: 0 -1 0 0 0
 | |
| 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
 | |
| 1>  ==================================================================
 | |
| 1>  typeid(T).name()double, maxdigits10 = 17
 | |
| 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
 | |
| 1>
 | |
| 1>  Iterations: 0 11 7 5 6
 | |
| 1>  Times 312 15000 4531 3906 4375
 | |
| 1>  Min Time 312
 | |
| 1>  Normalized Times 1.00 48.1 14.5 12.5 14.0
 | |
| 1>  Distance: 1 2 0 0 0
 | |
| 1>  Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
 | |
| 1>  ==================================================================
 | |
| 
 | |
| 
 | |
| Release
 | |
| 
 | |
| 1>  5 algorithms used:
 | |
| 1>  10 algorithms used:
 | |
| 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
 | |
| 1>  2 types compared.
 | |
| 1>  Precision of full type = 102 decimal digits
 | |
| 1>  Find root of 28.000000000000000,
 | |
| 1>  Expected answer = 3.0365889718756625
 | |
| 1>  typeid(T).name()float, maxdigits10 = 9
 | |
| 1>  find root of 28.0000000, expected answer = 3.03658897
 | |
| 1>
 | |
| 1>  Iterations: 0 8 6 4 5
 | |
| 1>  Times 312 781 937 937 937
 | |
| 1>  Min Time 312
 | |
| 1>  Normalized Times 1.00 2.50 3.00 3.00 3.00
 | |
| 1>  Distance: 0 -1 0 0 0
 | |
| 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
 | |
| 1>  ==================================================================
 | |
| 1>  typeid(T).name()double, maxdigits10 = 17
 | |
| 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
 | |
| 1>
 | |
| 1>  Iterations: 0 11 7 5 6
 | |
| 1>  Times 312 1093 937 937 937
 | |
| 1>  Min Time 312
 | |
| 1>  Normalized Times 1.00 3.50 3.00 3.00 3.00
 | |
| 1>  Distance: 1 2 0 0 0
 | |
| 1>  Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
 | |
| 1>  ==================================================================
 | |
| 
 | |
| 
 | |
| 
 | |
| 1>  5 algorithms used:
 | |
| 1>  15 algorithms used:
 | |
| 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
 | |
| 1>  3 types compared.
 | |
| 1>  Precision of full type = 102 decimal digits
 | |
| 1>  Find root of 28.00000000000000000000000000000000000000000000000000,
 | |
| 1>  Expected answer = 3.036588971875662519420809578505669635581453977248111
 | |
| 1>  typeid(T).name()float, maxdigits10 = 9
 | |
| 1>  find root of 28.0000000, expected answer = 3.03658897
 | |
| 1>
 | |
| 1>  Iterations: 0 8 6 4 5
 | |
| 1>  Times 156 781 937 1093 937
 | |
| 1>  Min Time 156
 | |
| 1>  Normalized Times 1.00 5.01 6.01 7.01 6.01
 | |
| 1>  Distance: 0 -1 0 0 0
 | |
| 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
 | |
| 1>  ==================================================================
 | |
| 1>  typeid(T).name()double, maxdigits10 = 17
 | |
| 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
 | |
| 1>
 | |
| 1>  Iterations: 0 11 7 5 6
 | |
| 1>  Times 312 1093 937 937 937
 | |
| 1>  Min Time 312
 | |
| 1>  Normalized Times 1.00 3.50 3.00 3.00 3.00
 | |
| 1>  Distance: 1 2 0 0 0
 | |
| 1>  Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
 | |
| 1>  ==================================================================
 | |
| 1>  typeid(T).name()class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0>, maxdigits10 = 52
 | |
| 1>  find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111
 | |
| 1>
 | |
| 1>  Iterations: 0 13 9 6 7
 | |
| 1>  Times 8750 177343 30312 52968 58125
 | |
| 1>  Min Time 8750
 | |
| 1>  Normalized Times 1.00 20.3 3.46 6.05 6.64
 | |
| 1>  Distance: 0 0 -1 0 0
 | |
| 1>  Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106
 | |
| 1>  ==================================================================
 | |
| 
 | |
| Reduce accuracy required to 0.5
 | |
| 
 | |
| 1>  5 algorithms used:
 | |
| 1>  15 algorithms used:
 | |
| 1>  boost::math::cbrt TOMS748 Newton Halley Shroeder
 | |
| 1>  3 floating_point types compared.
 | |
| 1>  Precision of full type = 102 decimal digits
 | |
| 1>  Find root of 28.00000000000000000000000000000000000000000000000000,
 | |
| 1>  Expected answer = 3.036588971875662519420809578505669635581453977248111
 | |
| 1>  typeid(T).name() = float, maxdigits10 = 9
 | |
| 1>  Digits accuracy fraction required = 0.500000000
 | |
| 1>  find root of 28.0000000, expected answer = 3.03658897
 | |
| 1>
 | |
| 1>  Iterations: 0 8 5 3 4
 | |
| 1>  Times 156 5937 1406 1250 1250
 | |
| 1>  Min Time 156
 | |
| 1>  Normalized Times 1.0 38. 9.0 8.0 8.0
 | |
| 1>  Distance: 0 -1 0 0 0
 | |
| 1>  Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
 | |
| 1>  ==================================================================
 | |
| 1>  typeid(T).name() = double, maxdigits10 = 17
 | |
| 1>  Digits accuracy fraction required = 0.50000000000000000
 | |
| 1>  find root of 28.000000000000000, expected answer = 3.0365889718756625
 | |
| 1>
 | |
| 1>  Iterations: 0 8 6 4 5
 | |
| 1>  Times 156 6250 1406 1406 1250
 | |
| 1>  Min Time 156
 | |
| 1>  Normalized Times 1.0 40. 9.0 9.0 8.0
 | |
| 1>  Distance: 1 3695766 0 0 0
 | |
| 1>  Roots: 3.0365889718756622 3.0365889702344129 3.0365889718756627 3.0365889718756627 3.0365889718756627
 | |
| 1>  ==================================================================
 | |
| 1>  typeid(T).name() = class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0>, maxdigits10 = 52
 | |
| 1>  Digits accuracy fraction required = 0.5000000000000000000000000000000000000000000000000000
 | |
| 1>  find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111
 | |
| 1>
 | |
| 1>  Iterations: 0 11 8 5 6
 | |
| 1>  Times 11562 239843 34843 47500 47812
 | |
| 1>  Min Time 11562
 | |
| 1>  Normalized Times 1.0 21. 3.0 4.1 4.1
 | |
| 1>  Distance: 0 0 -1 0 0
 | |
| 1>  Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106
 | |
| 1>  ==================================================================
 | |
| 
 | |
| 
 | |
| 
 | |
| */
 |