mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6592 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			264 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Reed-Solomon decoder
 | |
|  * Copyright 2002 Phil Karn, KA9Q
 | |
|  * May be used under the terms of the GNU General Public License (GPL)
 | |
|  */
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #include <stdio.h>
 | |
| #endif
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #define	min(a,b)	((a) < (b) ? (a) : (b))
 | |
| 
 | |
| #ifdef FIXED
 | |
| #include "fixed.h"
 | |
| #elif defined(BIGSYM)
 | |
| #include "int.h"
 | |
| #else
 | |
| #include "char.h"
 | |
| #endif
 | |
| 
 | |
| int DECODE_RS(
 | |
| #ifdef FIXED
 | |
| DTYPE *data, int *eras_pos, int no_eras,int pad){
 | |
| #else
 | |
| void *p,DTYPE *data, int *eras_pos, int no_eras){
 | |
|   struct rs *rs = (struct rs *)p;
 | |
| #endif
 | |
|   int deg_lambda, el, deg_omega;
 | |
|   int i, j, r,k;
 | |
|   DTYPE u,q,tmp,num1,num2,den,discr_r;
 | |
|   DTYPE lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
 | |
| 					 * and syndrome poly */
 | |
|   DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
 | |
|   DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS];
 | |
|   int syn_error, count;
 | |
| 
 | |
| #ifdef FIXED
 | |
|   /* Check pad parameter for validity */
 | |
|   if(pad < 0 || pad >= NN)
 | |
|     return -1;
 | |
| #endif
 | |
| 
 | |
|   /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
 | |
|   for(i=0;i<NROOTS;i++)
 | |
|     s[i] = data[0];
 | |
| 
 | |
|   for(j=1;j<NN-PAD;j++){
 | |
|     for(i=0;i<NROOTS;i++){
 | |
|       if(s[i] == 0){
 | |
| 	s[i] = data[j];
 | |
|       } else {
 | |
| 	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Convert syndromes to index form, checking for nonzero condition */
 | |
|   syn_error = 0;
 | |
|   for(i=0;i<NROOTS;i++){
 | |
|     syn_error |= s[i];
 | |
|     s[i] = INDEX_OF[s[i]];
 | |
|   }
 | |
| 
 | |
|   if (!syn_error) {
 | |
|     /* if syndrome is zero, data[] is a codeword and there are no
 | |
|      * errors to correct. So return data[] unmodified
 | |
|      */
 | |
|     count = 0;
 | |
|     goto finish;
 | |
|   }
 | |
|   memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
 | |
|   lambda[0] = 1;
 | |
| 
 | |
|   if (no_eras > 0) {
 | |
|     /* Init lambda to be the erasure locator polynomial */
 | |
|     lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
 | |
|     for (i = 1; i < no_eras; i++) {
 | |
|       u = MODNN(PRIM*(NN-1-eras_pos[i]));
 | |
|       for (j = i+1; j > 0; j--) {
 | |
| 	tmp = INDEX_OF[lambda[j - 1]];
 | |
| 	if(tmp != A0)
 | |
| 	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #if DEBUG >= 1
 | |
|     /* Test code that verifies the erasure locator polynomial just constructed
 | |
|        Needed only for decoder debugging. */
 | |
|     
 | |
|     /* find roots of the erasure location polynomial */
 | |
|     for(i=1;i<=no_eras;i++)
 | |
|       reg[i] = INDEX_OF[lambda[i]];
 | |
| 
 | |
|     count = 0;
 | |
|     for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | |
|       q = 1;
 | |
|       for (j = 1; j <= no_eras; j++)
 | |
| 	if (reg[j] != A0) {
 | |
| 	  reg[j] = MODNN(reg[j] + j);
 | |
| 	  q ^= ALPHA_TO[reg[j]];
 | |
| 	}
 | |
|       if (q != 0)
 | |
| 	continue;
 | |
|       /* store root and error location number indices */
 | |
|       root[count] = i;
 | |
|       loc[count] = k;
 | |
|       count++;
 | |
|     }
 | |
|     if (count != no_eras) {
 | |
|       printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
 | |
|       count = -1;
 | |
|       goto finish;
 | |
|     }
 | |
| #if DEBUG >= 2
 | |
|     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
 | |
|     for (i = 0; i < count; i++)
 | |
|       printf("%d ", loc[i]);
 | |
|     printf("\n");
 | |
| #endif
 | |
| #endif
 | |
|   }
 | |
|   for(i=0;i<NROOTS+1;i++)
 | |
|     //    printf("%d  %d  %d\n",i,lambda[i],INDEX_OF[lambda[i]]);
 | |
|     b[i] = INDEX_OF[lambda[i]];
 | |
|   
 | |
|   /*
 | |
|    * Begin Berlekamp-Massey algorithm to determine error+erasure
 | |
|    * locator polynomial
 | |
|    */
 | |
|   r = no_eras;
 | |
|   el = no_eras;
 | |
|   while (++r <= NROOTS) {	/* r is the step number */
 | |
|     /* Compute discrepancy at the r-th step in poly-form */
 | |
|     discr_r = 0;
 | |
|     for (i = 0; i < r; i++){
 | |
|       if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
 | |
| 	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
 | |
|       }
 | |
|     }
 | |
|     discr_r = INDEX_OF[discr_r];	/* Index form */
 | |
|     if (discr_r == A0) {
 | |
|       /* 2 lines below: B(x) <-- x*B(x) */
 | |
|       memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | |
|       b[0] = A0;
 | |
|     } else {
 | |
|       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
 | |
|       t[0] = lambda[0];
 | |
|       for (i = 0 ; i < NROOTS; i++) {
 | |
| 	if(b[i] != A0)
 | |
| 	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
 | |
| 	else
 | |
| 	  t[i+1] = lambda[i+1];
 | |
|       }
 | |
|       if (2 * el <= r + no_eras - 1) {
 | |
| 	el = r + no_eras - el;
 | |
| 	/*
 | |
| 	 * 2 lines below: B(x) <-- inv(discr_r) *
 | |
| 	 * lambda(x)
 | |
| 	 */
 | |
| 	for (i = 0; i <= NROOTS; i++)
 | |
| 	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
 | |
|       } else {
 | |
| 	/* 2 lines below: B(x) <-- x*B(x) */
 | |
| 	memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | |
| 	b[0] = A0;
 | |
|       }
 | |
|       memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Convert lambda to index form and compute deg(lambda(x)) */
 | |
|   deg_lambda = 0;
 | |
|   for(i=0;i<NROOTS+1;i++){
 | |
|     lambda[i] = INDEX_OF[lambda[i]];
 | |
|     if(lambda[i] != A0)
 | |
|       deg_lambda = i;
 | |
|   }
 | |
|   /* Find roots of the error+erasure locator polynomial by Chien search */
 | |
|   memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
 | |
|   count = 0;		/* Number of roots of lambda(x) */
 | |
|   for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | |
|     q = 1; /* lambda[0] is always 0 */
 | |
|     for (j = deg_lambda; j > 0; j--){
 | |
|       if (reg[j] != A0) {
 | |
| 	reg[j] = MODNN(reg[j] + j);
 | |
| 	q ^= ALPHA_TO[reg[j]];
 | |
|       }
 | |
|     }
 | |
|     if (q != 0)
 | |
|       continue; /* Not a root */
 | |
|     /* store root (index-form) and error location number */
 | |
| #if DEBUG>=2
 | |
|     printf("count %d root %d loc %d\n",count,i,k);
 | |
| #endif
 | |
|     root[count] = i;
 | |
|     loc[count] = k;
 | |
|     /* If we've already found max possible roots,
 | |
|      * abort the search to save time
 | |
|      */
 | |
|     if(++count == deg_lambda)
 | |
|       break;
 | |
|   }
 | |
|   if (deg_lambda != count) {
 | |
|     /*
 | |
|      * deg(lambda) unequal to number of roots => uncorrectable
 | |
|      * error detected
 | |
|      */
 | |
|     count = -1;
 | |
|     goto finish;
 | |
|   }
 | |
|   /*
 | |
|    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
 | |
|    * x**NROOTS). in index form. Also find deg(omega).
 | |
|    */
 | |
|   deg_omega = deg_lambda-1;
 | |
|   for (i = 0; i <= deg_omega;i++){
 | |
|     tmp = 0;
 | |
|     for(j=i;j >= 0; j--){
 | |
|       if ((s[i - j] != A0) && (lambda[j] != A0))
 | |
| 	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
 | |
|     }
 | |
|     omega[i] = INDEX_OF[tmp];
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
 | |
|    * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
 | |
|    */
 | |
|   for (j = count-1; j >=0; j--) {
 | |
|     num1 = 0;
 | |
|     for (i = deg_omega; i >= 0; i--) {
 | |
|       if (omega[i] != A0)
 | |
| 	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
 | |
|     }
 | |
|     num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
 | |
|     den = 0;
 | |
|     
 | |
|     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
 | |
|     for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
 | |
|       if(lambda[i+1] != A0)
 | |
| 	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
 | |
|     }
 | |
| #if DEBUG >= 1
 | |
|     if (den == 0) {
 | |
|       printf("\n ERROR: denominator = 0\n");
 | |
|       count = -1;
 | |
|       goto finish;
 | |
|     }
 | |
| #endif
 | |
|     /* Apply error to data */
 | |
|     if (num1 != 0 && loc[j] >= PAD) {
 | |
|       data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
 | |
|     }
 | |
|   }
 | |
|  finish:
 | |
|   if(eras_pos != NULL){
 | |
|     for(i=0;i<count;i++)
 | |
|       eras_pos[i] = loc[i];
 | |
|   }
 | |
|   return count;
 | |
| }
 |