mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * abm_precision.cpp
 | |
|  *
 | |
|  * example to check the order of the multi-step methods
 | |
|  *
 | |
|  * Copyright 2009-2013 Karsten Ahnert
 | |
|  * Copyright 2009-2013 Mario Mulansky
 | |
|  *
 | |
|  * Distributed under the Boost Software License, Version 1.0.
 | |
|  * (See accompanying file LICENSE_1_0.txt or
 | |
|  * copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <cmath>
 | |
| 
 | |
| #include <boost/array.hpp>
 | |
| #include <boost/numeric/odeint.hpp>
 | |
| 
 | |
| using namespace boost::numeric::odeint;
 | |
| 
 | |
| const int Steps = 4;
 | |
| 
 | |
| typedef double value_type;
 | |
| 
 | |
| typedef boost::array< double , 2 > state_type;
 | |
| 
 | |
| typedef runge_kutta_fehlberg78<state_type> initializing_stepper_type;
 | |
| typedef adams_bashforth_moulton< Steps , state_type > stepper_type;
 | |
| //typedef adams_bashforth< Steps , state_type > stepper_type;
 | |
| 
 | |
| // harmonic oscillator, analytic solution x[0] = sin( t )
 | |
| struct osc
 | |
| {
 | |
|     void operator()( const state_type &x , state_type &dxdt , const double t ) const
 | |
|     {
 | |
|         dxdt[0] = x[1];
 | |
|         dxdt[1] = -x[0];
 | |
|     }
 | |
| };
 | |
| 
 | |
| int main()
 | |
| {
 | |
|     stepper_type stepper;
 | |
|     initializing_stepper_type init_stepper;
 | |
|     const int o = stepper.order()+1; //order of the error is order of approximation + 1
 | |
| 
 | |
|     const state_type x0 = {{ 0.0 , 1.0 }};
 | |
|     state_type x1 = x0;
 | |
|     double t = 0.0;
 | |
|     double dt = 0.25;
 | |
|     // initialization, does a number of steps already to fill internal buffer, t is increased
 | |
|     // we use the rk78 as initializing stepper
 | |
|     stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt );
 | |
|     // do a number of steps to fill the buffer with results from adams bashforth
 | |
|     for( size_t n=0 ; n < stepper.steps ; ++n )
 | |
|     {
 | |
|         stepper.do_step( osc() , x1 , t , dt );
 | |
|         t += dt;
 | |
|     }
 | |
|     double A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] );
 | |
|     double phi = std::asin(x1[0]/A) - t;
 | |
|     // now we do the actual step
 | |
|     stepper.do_step( osc() , x1 , t , dt );
 | |
|     // only examine the error of the adams-bashforth-moulton step, not the initialization
 | |
|     const double f = 2.0 * std::abs( A*sin(t+dt+phi) - x1[0] ) / std::pow( dt , o ); // upper bound
 | |
| 
 | |
|     std::cout << "# " << o << " , " << f << std::endl;
 | |
| 
 | |
|     /* as long as we have errors above machine precision */
 | |
|     while( f*std::pow( dt , o ) > 1E-16 )
 | |
|     {
 | |
|         x1 = x0;
 | |
|         t = 0.0;
 | |
|         stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt );
 | |
|         A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] );
 | |
|         phi = std::asin(x1[0]/A) - t;
 | |
|         // now we do the actual step
 | |
|         stepper.do_step( osc() , x1 , t , dt );
 | |
|         // only examine the error of the adams-bashforth-moulton step, not the initialization
 | |
|         std::cout << dt << '\t' <<  std::abs( A*sin(t+dt+phi) - x1[0] ) << std::endl;
 | |
|         dt *= 0.5;
 | |
|     }
 | |
| }
 |