mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Paul A. 2007, 2010
 | |
| // Copyright John Maddock 2007
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Simple example of computing probabilities for a binomial random variable.
 | |
| // Replication of source nag_binomial_dist (g01bjc).
 | |
| 
 | |
| // Shows how to replace NAG C library calls by Boost Math Toolkit C++ calls.
 | |
| // Note that the default policy does not replicate the way that NAG
 | |
| // library calls handle 'bad' arguments, but you can define policies that do,
 | |
| // as well as other policies that may suit your application even better.
 | |
| // See the examples of changing default policies for details.
 | |
| 
 | |
| #include <boost/math/distributions/binomial.hpp>
 | |
| 
 | |
| #include <iostream>
 | |
|   using std::cout; using std::endl; using std::ios; using std::showpoint;
 | |
| #include <iomanip>
 | |
|   using std::fixed; using std::setw;
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   cout << "Using the binomial distribution to replicate a NAG library call." << endl;
 | |
|   using boost::math::binomial_distribution;
 | |
| 
 | |
|   // This replicates the computation of the examples of using nag-binomial_dist
 | |
|   // using g01bjc in section g01 Somple Calculations on Statistical Data.
 | |
|   // http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf
 | |
|   // Program results section 8.3 page 3.g01bjc.3
 | |
|     //8.2. Program Data
 | |
|     //g01bjc Example Program Data
 | |
|     //4 0.50 2 : n, p, k
 | |
|     //19 0.44 13
 | |
|     //100 0.75 67
 | |
|     //2000 0.33 700
 | |
|     //8.3. Program Results
 | |
|     //g01bjc Example Program Results
 | |
|     //n p k plek pgtk peqk
 | |
|     //4 0.500 2 0.68750 0.31250 0.37500
 | |
|     //19 0.440 13 0.99138 0.00862 0.01939
 | |
|     //100 0.750 67 0.04460 0.95540 0.01700
 | |
|     //2000 0.330 700 0.97251 0.02749 0.00312
 | |
| 
 | |
|   cout.setf(ios::showpoint); // Trailing zeros to show significant decimal digits.
 | |
|   cout.precision(5); // Might calculate this from trials in distribution?
 | |
|   cout << fixed;
 | |
|   //  Binomial distribution.
 | |
| 
 | |
|   // Note  that  cdf(dist, k) is equivalent to NAG library plek probability of <= k
 | |
|   // cdf(complement(dist, k)) is equivalent to NAG library pgtk probability of > k
 | |
|   //             pdf(dist, k) is equivalent to NAG library peqk probability of == k
 | |
| 
 | |
|   cout << " n        p     k     plek     pgtk     peqk " << endl;
 | |
|   binomial_distribution<>my_dist(4, 0.5);
 | |
|   cout << setw(4) << (int)my_dist.trials() << "  " << my_dist.success_fraction()
 | |
|   << "   " << 2 << "  " << cdf(my_dist, 2) << "  "
 | |
|   << cdf(complement(my_dist, 2)) << "  " << pdf(my_dist, 2) << endl;
 | |
| 
 | |
|   binomial_distribution<>two(19, 0.440);
 | |
|   cout << setw(4) << (int)two.trials() <<  "  "  << two.success_fraction()
 | |
|     << "  " << 13 << "  " << cdf(two, 13) << "  "
 | |
|     << cdf(complement(two, 13)) << "  " << pdf(two, 13) << endl;
 | |
| 
 | |
|   binomial_distribution<>three(100, 0.750);
 | |
|   cout << setw(4) << (int)three.trials() << "  " << three.success_fraction()
 | |
|     << "  " << 67 << "  " << cdf(three, 67) << "  " << cdf(complement(three, 67))
 | |
|     << "  " << pdf(three, 67) << endl;
 | |
|   binomial_distribution<>four(2000, 0.330);
 | |
|   cout << setw(4) << (int)four.trials() <<  "  "  << four.success_fraction()
 | |
|   << " " << 700 << "  "
 | |
|     << cdf(four, 700) << "  " << cdf(complement(four, 700))
 | |
|     << "  " << pdf(four, 700) << endl;
 | |
| 
 | |
|   return 0;
 | |
| } // int main()
 | |
| 
 | |
| /*
 | |
| 
 | |
| Example of using the binomial distribution to replicate a NAG library call.
 | |
|  n        p     k     plek     pgtk     peqk
 | |
|    4  0.50000   2  0.68750  0.31250  0.37500
 | |
|   19  0.44000  13  0.99138  0.00862  0.01939
 | |
|  100  0.75000  67  0.04460  0.95540  0.01700
 | |
| 2000  0.33000 700  0.97251  0.02749  0.00312
 | |
| 
 | |
| 
 | |
|  */
 | |
| 
 |