mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			556 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			556 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2006, 2007
 | |
| // Copyright Paul A. Bristow 2010
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #include <iostream>
 | |
| using std::cout; using std::endl;
 | |
| using std::left; using std::fixed; using std::right; using std::scientific;
 | |
| #include <iomanip>
 | |
| using std::setw;
 | |
| using std::setprecision;
 | |
| 
 | |
| #include <boost/math/distributions/chi_squared.hpp>
 | |
| 
 | |
| int error_result = 0;
 | |
| 
 | |
| void confidence_limits_on_std_deviation(
 | |
|         double Sd,    // Sample Standard Deviation
 | |
|         unsigned N)   // Sample size
 | |
| {
 | |
|    // Calculate confidence intervals for the standard deviation.
 | |
|    // For example if we set the confidence limit to
 | |
|    // 0.95, we know that if we repeat the sampling
 | |
|    // 100 times, then we expect that the true standard deviation
 | |
|    // will be between out limits on 95 occations.
 | |
|    // Note: this is not the same as saying a 95%
 | |
|    // confidence interval means that there is a 95%
 | |
|    // probability that the interval contains the true standard deviation.
 | |
|    // The interval computed from a given sample either
 | |
|    // contains the true standard deviation or it does not.
 | |
|    // See http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm
 | |
| 
 | |
|    // using namespace boost::math; // potential name ambiguity with std <random>
 | |
|    using boost::math::chi_squared;
 | |
|    using boost::math::quantile;
 | |
|    using boost::math::complement;
 | |
| 
 | |
|    // Print out general info:
 | |
|    cout <<
 | |
|       "________________________________________________\n"
 | |
|       "2-Sided Confidence Limits For Standard Deviation\n"
 | |
|       "________________________________________________\n\n";
 | |
|    cout << setprecision(7);
 | |
|    cout << setw(40) << left << "Number of Observations" << "=  " << N << "\n";
 | |
|    cout << setw(40) << left << "Standard Deviation" << "=  " << Sd << "\n";
 | |
|    //
 | |
|    // Define a table of significance/risk levels:
 | |
|    double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
 | |
|    //
 | |
|    // Start by declaring the distribution we'll need:
 | |
|    chi_squared dist(N - 1);
 | |
|    //
 | |
|    // Print table header:
 | |
|    //
 | |
|    cout << "\n\n"
 | |
|            "_____________________________________________\n"
 | |
|            "Confidence          Lower          Upper\n"
 | |
|            " Value (%)          Limit          Limit\n"
 | |
|            "_____________________________________________\n";
 | |
|    //
 | |
|    // Now print out the data for the table rows.
 | |
|    for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
 | |
|    {
 | |
|       // Confidence value:
 | |
|       cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
 | |
|       // Calculate limits:
 | |
|       double lower_limit = sqrt((N - 1) * Sd * Sd / quantile(complement(dist, alpha[i] / 2)));
 | |
|       double upper_limit = sqrt((N - 1) * Sd * Sd / quantile(dist, alpha[i] / 2));
 | |
|       // Print Limits:
 | |
|       cout << fixed << setprecision(5) << setw(15) << right << lower_limit;
 | |
|       cout << fixed << setprecision(5) << setw(15) << right << upper_limit << endl;
 | |
|    }
 | |
|    cout << endl;
 | |
| } // void confidence_limits_on_std_deviation
 | |
| 
 | |
| void confidence_limits_on_std_deviation_alpha(
 | |
|         double Sd,    // Sample Standard Deviation
 | |
|         double alpha  // confidence
 | |
|         )
 | |
| {  // Calculate confidence intervals for the standard deviation.
 | |
|    // for the alpha parameter, for a range number of observations,
 | |
|    // from a mere 2 up to a million.
 | |
|    // O. L. Davies, Statistical Methods in Research and Production, ISBN 0 05 002437 X,
 | |
|    // 4.33 Page 68, Table H, pp 452 459.
 | |
| 
 | |
|    //   using namespace std;
 | |
|    // using namespace boost::math;
 | |
|    using boost::math::chi_squared;
 | |
|    using boost::math::quantile;
 | |
|    using boost::math::complement;
 | |
| 
 | |
|    // Define a table of numbers of observations:
 | |
|    unsigned int obs[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40 , 50, 60, 100, 120, 1000, 10000, 50000, 100000, 1000000};
 | |
| 
 | |
|    cout <<   // Print out heading:
 | |
|       "________________________________________________\n"
 | |
|       "2-Sided Confidence Limits For Standard Deviation\n"
 | |
|       "________________________________________________\n\n";
 | |
|    cout << setprecision(7);
 | |
|    cout << setw(40) << left << "Confidence level (two-sided) " << "=  " << alpha << "\n";
 | |
|    cout << setw(40) << left << "Standard Deviation" << "=  " << Sd << "\n";
 | |
| 
 | |
|    cout << "\n\n"      // Print table header:
 | |
|             "_____________________________________________\n"
 | |
|            "Observations        Lower          Upper\n"
 | |
|            "                    Limit          Limit\n"
 | |
|            "_____________________________________________\n";
 | |
|     for(unsigned i = 0; i < sizeof(obs)/sizeof(obs[0]); ++i)
 | |
|    {
 | |
|      unsigned int N = obs[i]; // Observations
 | |
|      // Start by declaring the distribution with the appropriate :
 | |
|      chi_squared dist(N - 1);
 | |
| 
 | |
|      // Now print out the data for the table row.
 | |
|       cout << fixed << setprecision(3) << setw(10) << right << N;
 | |
|       // Calculate limits: (alpha /2 because it is a two-sided (upper and lower limit) test.
 | |
|       double lower_limit = sqrt((N - 1) * Sd * Sd / quantile(complement(dist, alpha / 2)));
 | |
|       double upper_limit = sqrt((N - 1) * Sd * Sd / quantile(dist, alpha / 2));
 | |
|       // Print Limits:
 | |
|       cout << fixed << setprecision(4) << setw(15) << right << lower_limit;
 | |
|       cout << fixed << setprecision(4) << setw(15) << right << upper_limit << endl;
 | |
|    }
 | |
|    cout << endl;
 | |
| }// void confidence_limits_on_std_deviation_alpha
 | |
| 
 | |
| void chi_squared_test(
 | |
|        double Sd,     // Sample std deviation
 | |
|        double D,      // True std deviation
 | |
|        unsigned N,    // Sample size
 | |
|        double alpha)  // Significance level
 | |
| {
 | |
|    //
 | |
|    // A Chi Squared test applied to a single set of data.
 | |
|    // We are testing the null hypothesis that the true
 | |
|    // standard deviation of the sample is D, and that any variation is down
 | |
|    // to chance.  We can also test the alternative hypothesis
 | |
|    // that any difference is not down to chance.
 | |
|    // See http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm
 | |
|    //
 | |
|    // using namespace boost::math;
 | |
|    using boost::math::chi_squared;
 | |
|    using boost::math::quantile;
 | |
|    using boost::math::complement;
 | |
|    using boost::math::cdf;
 | |
| 
 | |
|    // Print header:
 | |
|    cout <<
 | |
|       "______________________________________________\n"
 | |
|       "Chi Squared test for sample standard deviation\n"
 | |
|       "______________________________________________\n\n";
 | |
|    cout << setprecision(5);
 | |
|    cout << setw(55) << left << "Number of Observations" << "=  " << N << "\n";
 | |
|    cout << setw(55) << left << "Sample Standard Deviation" << "=  " << Sd << "\n";
 | |
|    cout << setw(55) << left << "Expected True Standard Deviation" << "=  " << D << "\n\n";
 | |
|    //
 | |
|    // Now we can calculate and output some stats:
 | |
|    //
 | |
|    // test-statistic:
 | |
|    double t_stat = (N - 1) * (Sd / D) * (Sd / D);
 | |
|    cout << setw(55) << left << "Test Statistic" << "=  " << t_stat << "\n";
 | |
|    //
 | |
|    // Finally define our distribution, and get the probability:
 | |
|    //
 | |
|    chi_squared dist(N - 1);
 | |
|    double p = cdf(dist, t_stat);
 | |
|    cout << setw(55) << left << "CDF of test statistic: " << "=  "
 | |
|       << setprecision(3) << scientific << p << "\n";
 | |
|    double ucv = quantile(complement(dist, alpha));
 | |
|    double ucv2 = quantile(complement(dist, alpha / 2));
 | |
|    double lcv = quantile(dist, alpha);
 | |
|    double lcv2 = quantile(dist, alpha / 2);
 | |
|    cout << setw(55) << left << "Upper Critical Value at alpha: " << "=  "
 | |
|       << setprecision(3) << scientific << ucv << "\n";
 | |
|    cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "=  "
 | |
|       << setprecision(3) << scientific << ucv2 << "\n";
 | |
|    cout << setw(55) << left << "Lower Critical Value at alpha: " << "=  "
 | |
|       << setprecision(3) << scientific << lcv << "\n";
 | |
|    cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "=  "
 | |
|       << setprecision(3) << scientific << lcv2 << "\n\n";
 | |
|    //
 | |
|    // Finally print out results of alternative hypothesis:
 | |
|    //
 | |
|    cout << setw(55) << left <<
 | |
|       "Results for Alternative Hypothesis and alpha" << "=  "
 | |
|       << setprecision(4) << fixed << alpha << "\n\n";
 | |
|    cout << "Alternative Hypothesis              Conclusion\n";
 | |
|    cout << "Standard Deviation != " << setprecision(3) << fixed << D << "            ";
 | |
|    if((ucv2 < t_stat) || (lcv2 > t_stat))
 | |
|       cout << "NOT REJECTED\n";
 | |
|    else
 | |
|       cout << "REJECTED\n";
 | |
|    cout << "Standard Deviation  < " << setprecision(3) << fixed << D << "            ";
 | |
|    if(lcv > t_stat)
 | |
|       cout << "NOT REJECTED\n";
 | |
|    else
 | |
|       cout << "REJECTED\n";
 | |
|    cout << "Standard Deviation  > " << setprecision(3) << fixed << D << "            ";
 | |
|    if(ucv < t_stat)
 | |
|       cout << "NOT REJECTED\n";
 | |
|    else
 | |
|       cout << "REJECTED\n";
 | |
|    cout << endl << endl;
 | |
| } // void chi_squared_test
 | |
| 
 | |
| void chi_squared_sample_sized(
 | |
|         double diff,      // difference from variance to detect
 | |
|         double variance)  // true variance
 | |
| {
 | |
|    using namespace std;
 | |
|    // using boost::math;
 | |
|    using boost::math::chi_squared;
 | |
|    using boost::math::quantile;
 | |
|    using boost::math::complement;
 | |
|    using boost::math::cdf;
 | |
| 
 | |
|    try
 | |
|    {
 | |
|    cout <<   // Print out general info:
 | |
|      "_____________________________________________________________\n"
 | |
|       "Estimated sample sizes required for various confidence levels\n"
 | |
|       "_____________________________________________________________\n\n";
 | |
|    cout << setprecision(5);
 | |
|    cout << setw(40) << left << "True Variance" << "=  " << variance << "\n";
 | |
|    cout << setw(40) << left << "Difference to detect" << "=  " << diff << "\n";
 | |
|    //
 | |
|    // Define a table of significance levels:
 | |
|    //
 | |
|    double alpha[] = { 0.5, 0.33333333333333333333333, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
 | |
|    //
 | |
|    // Print table header:
 | |
|    //
 | |
|    cout << "\n\n"
 | |
|            "_______________________________________________________________\n"
 | |
|            "Confidence       Estimated          Estimated\n"
 | |
|            " Value (%)      Sample Size        Sample Size\n"
 | |
|            "                (lower one-         (upper one-\n"
 | |
|            "                 sided test)        sided test)\n"
 | |
|            "_______________________________________________________________\n";
 | |
|    //
 | |
|    // Now print out the data for the table rows.
 | |
|    //
 | |
|    for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
 | |
|    {
 | |
|       // Confidence value:
 | |
|       cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
 | |
|       // Calculate df for a lower single-sided test:
 | |
|       double df = chi_squared::find_degrees_of_freedom(
 | |
|          -diff, alpha[i], alpha[i], variance);
 | |
|       // Convert to integral sample size (df is a floating point value in this implementation):
 | |
|       double size = ceil(df) + 1;
 | |
|       // Print size:
 | |
|       cout << fixed << setprecision(0) << setw(16) << right << size;
 | |
|       // Calculate df for an upper single-sided test:
 | |
|       df = chi_squared::find_degrees_of_freedom(
 | |
|          diff, alpha[i], alpha[i], variance);
 | |
|       // Convert to integral sample size:
 | |
|       size = ceil(df) + 1;
 | |
|       // Print size:
 | |
|       cout << fixed << setprecision(0) << setw(16) << right << size << endl;
 | |
|    }
 | |
|    cout << endl;
 | |
|    }
 | |
|   catch(const std::exception& e)
 | |
|   { // Always useful to include try & catch blocks because default policies
 | |
|     // are to throw exceptions on arguments that cause errors like underflow, overflow.
 | |
|     // Lacking try & catch blocks, the program will abort without a message below,
 | |
|     // which may give some helpful clues as to the cause of the exception.
 | |
|     std::cout <<
 | |
|       "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
 | |
|     ++error_result;
 | |
|   }
 | |
| } // chi_squared_sample_sized
 | |
| 
 | |
| int main()
 | |
| {
 | |
|    // Run tests for Gear data
 | |
|    // see http://www.itl.nist.gov/div898/handbook/eda/section3/eda3581.htm
 | |
|    // Tests measurements of gear diameter.
 | |
|    //
 | |
|    confidence_limits_on_std_deviation(0.6278908E-02, 100);
 | |
|    chi_squared_test(0.6278908E-02, 0.1, 100, 0.05);
 | |
|    chi_squared_sample_sized(0.1 - 0.6278908E-02, 0.1);
 | |
|    //
 | |
|    // Run tests for silicon wafer fabrication data.
 | |
|    // see http://www.itl.nist.gov/div898/handbook/prc/section2/prc23.htm
 | |
|    // A supplier of 100 ohm.cm silicon wafers claims that his fabrication
 | |
|    // process can produce wafers with sufficient consistency so that the
 | |
|    // standard deviation of resistivity for the lot does not exceed
 | |
|    // 10 ohm.cm. A sample of N = 10 wafers taken from the lot has a
 | |
|    // standard deviation of 13.97 ohm.cm
 | |
|    //
 | |
|    confidence_limits_on_std_deviation(13.97, 10);
 | |
|    chi_squared_test(13.97, 10.0, 10, 0.05);
 | |
|    chi_squared_sample_sized(13.97 * 13.97 - 100, 100);
 | |
|    chi_squared_sample_sized(55, 100);
 | |
|    chi_squared_sample_sized(1, 100);
 | |
| 
 | |
|    // List confidence interval multipliers for standard deviation
 | |
|    // for a range of numbers of observations from 2 to a million,
 | |
|    // and for a few alpha values, 0.1, 0.05, 0.01 for condfidences 90, 95, 99 %
 | |
|    confidence_limits_on_std_deviation_alpha(1., 0.1);
 | |
|    confidence_limits_on_std_deviation_alpha(1., 0.05);
 | |
|    confidence_limits_on_std_deviation_alpha(1., 0.01);
 | |
| 
 | |
|    return error_result;
 | |
| }
 | |
| 
 | |
| /*
 | |
| 
 | |
| ________________________________________________
 | |
| 2-Sided Confidence Limits For Standard Deviation
 | |
| ________________________________________________
 | |
| Number of Observations                  =  100
 | |
| Standard Deviation                      =  0.006278908
 | |
| _____________________________________________
 | |
| Confidence          Lower          Upper
 | |
|  Value (%)          Limit          Limit
 | |
| _____________________________________________
 | |
|     50.000        0.00601        0.00662
 | |
|     75.000        0.00582        0.00685
 | |
|     90.000        0.00563        0.00712
 | |
|     95.000        0.00551        0.00729
 | |
|     99.000        0.00530        0.00766
 | |
|     99.900        0.00507        0.00812
 | |
|     99.990        0.00489        0.00855
 | |
|     99.999        0.00474        0.00895
 | |
| ______________________________________________
 | |
| Chi Squared test for sample standard deviation
 | |
| ______________________________________________
 | |
| Number of Observations                                 =  100
 | |
| Sample Standard Deviation                              =  0.00628
 | |
| Expected True Standard Deviation                       =  0.10000
 | |
| Test Statistic                                         =  0.39030
 | |
| CDF of test statistic:                                 =  1.438e-099
 | |
| Upper Critical Value at alpha:                         =  1.232e+002
 | |
| Upper Critical Value at alpha/2:                       =  1.284e+002
 | |
| Lower Critical Value at alpha:                         =  7.705e+001
 | |
| Lower Critical Value at alpha/2:                       =  7.336e+001
 | |
| Results for Alternative Hypothesis and alpha           =  0.0500
 | |
| Alternative Hypothesis              Conclusion
 | |
| Standard Deviation != 0.100            NOT REJECTED
 | |
| Standard Deviation  < 0.100            NOT REJECTED
 | |
| Standard Deviation  > 0.100            REJECTED
 | |
| _____________________________________________________________
 | |
| Estimated sample sizes required for various confidence levels
 | |
| _____________________________________________________________
 | |
| True Variance                           =  0.10000
 | |
| Difference to detect                    =  0.09372
 | |
| _______________________________________________________________
 | |
| Confidence       Estimated          Estimated
 | |
|  Value (%)      Sample Size        Sample Size
 | |
|                 (lower one-         (upper one-
 | |
|                  sided test)        sided test)
 | |
| _______________________________________________________________
 | |
|     50.000               2               2
 | |
|     66.667               2               5
 | |
|     75.000               2              10
 | |
|     90.000               4              32
 | |
|     95.000               5              52
 | |
|     99.000               8             102
 | |
|     99.900              13             178
 | |
|     99.990              18             257
 | |
|     99.999              23             337
 | |
| ________________________________________________
 | |
| 2-Sided Confidence Limits For Standard Deviation
 | |
| ________________________________________________
 | |
| Number of Observations                  =  10
 | |
| Standard Deviation                      =  13.9700000
 | |
| _____________________________________________
 | |
| Confidence          Lower          Upper
 | |
|  Value (%)          Limit          Limit
 | |
| _____________________________________________
 | |
|     50.000       12.41880       17.25579
 | |
|     75.000       11.23084       19.74131
 | |
|     90.000       10.18898       22.98341
 | |
|     95.000        9.60906       25.50377
 | |
|     99.000        8.62898       31.81825
 | |
|     99.900        7.69466       42.51593
 | |
|     99.990        7.04085       55.93352
 | |
|     99.999        6.54517       73.00132
 | |
| ______________________________________________
 | |
| Chi Squared test for sample standard deviation
 | |
| ______________________________________________
 | |
| Number of Observations                                 =  10
 | |
| Sample Standard Deviation                              =  13.97000
 | |
| Expected True Standard Deviation                       =  10.00000
 | |
| Test Statistic                                         =  17.56448
 | |
| CDF of test statistic:                                 =  9.594e-001
 | |
| Upper Critical Value at alpha:                         =  1.692e+001
 | |
| Upper Critical Value at alpha/2:                       =  1.902e+001
 | |
| Lower Critical Value at alpha:                         =  3.325e+000
 | |
| Lower Critical Value at alpha/2:                       =  2.700e+000
 | |
| Results for Alternative Hypothesis and alpha           =  0.0500
 | |
| Alternative Hypothesis              Conclusion
 | |
| Standard Deviation != 10.000            REJECTED
 | |
| Standard Deviation  < 10.000            REJECTED
 | |
| Standard Deviation  > 10.000            NOT REJECTED
 | |
| _____________________________________________________________
 | |
| Estimated sample sizes required for various confidence levels
 | |
| _____________________________________________________________
 | |
| True Variance                           =  100.00000
 | |
| Difference to detect                    =  95.16090
 | |
| _______________________________________________________________
 | |
| Confidence       Estimated          Estimated
 | |
|  Value (%)      Sample Size        Sample Size
 | |
|                 (lower one-         (upper one-
 | |
|                  sided test)        sided test)
 | |
| _______________________________________________________________
 | |
|     50.000               2               2
 | |
|     66.667               2               5
 | |
|     75.000               2              10
 | |
|     90.000               4              32
 | |
|     95.000               5              51
 | |
|     99.000               7              99
 | |
|     99.900              11             174
 | |
|     99.990              15             251
 | |
|     99.999              20             330
 | |
| _____________________________________________________________
 | |
| Estimated sample sizes required for various confidence levels
 | |
| _____________________________________________________________
 | |
| True Variance                           =  100.00000
 | |
| Difference to detect                    =  55.00000
 | |
| _______________________________________________________________
 | |
| Confidence       Estimated          Estimated
 | |
|  Value (%)      Sample Size        Sample Size
 | |
|                 (lower one-         (upper one-
 | |
|                  sided test)        sided test)
 | |
| _______________________________________________________________
 | |
|     50.000               2               2
 | |
|     66.667               4              10
 | |
|     75.000               8              21
 | |
|     90.000              23              71
 | |
|     95.000              36             115
 | |
|     99.000              71             228
 | |
|     99.900             123             401
 | |
|     99.990             177             580
 | |
|     99.999             232             762
 | |
| _____________________________________________________________
 | |
| Estimated sample sizes required for various confidence levels
 | |
| _____________________________________________________________
 | |
| True Variance                           =  100.00000
 | |
| Difference to detect                    =  1.00000
 | |
| _______________________________________________________________
 | |
| Confidence       Estimated          Estimated
 | |
|  Value (%)      Sample Size        Sample Size
 | |
|                 (lower one-         (upper one-
 | |
|                  sided test)        sided test)
 | |
| _______________________________________________________________
 | |
|     50.000               2               2
 | |
|     66.667           14696           14993
 | |
|     75.000           36033           36761
 | |
|     90.000          130079          132707
 | |
|     95.000          214283          218612
 | |
|     99.000          428628          437287
 | |
|     99.900          756333          771612
 | |
|     99.990         1095435         1117564
 | |
|     99.999         1440608         1469711
 | |
| ________________________________________________
 | |
| 2-Sided Confidence Limits For Standard Deviation
 | |
| ________________________________________________
 | |
| Confidence level (two-sided)            =  0.1000000
 | |
| Standard Deviation                      =  1.0000000
 | |
| _____________________________________________
 | |
| Observations        Lower          Upper
 | |
|                     Limit          Limit
 | |
| _____________________________________________
 | |
|          2         0.5102        15.9472
 | |
|          3         0.5778         4.4154
 | |
|          4         0.6196         2.9200
 | |
|          5         0.6493         2.3724
 | |
|          6         0.6720         2.0893
 | |
|          7         0.6903         1.9154
 | |
|          8         0.7054         1.7972
 | |
|          9         0.7183         1.7110
 | |
|         10         0.7293         1.6452
 | |
|         15         0.7688         1.4597
 | |
|         20         0.7939         1.3704
 | |
|         30         0.8255         1.2797
 | |
|         40         0.8454         1.2320
 | |
|         50         0.8594         1.2017
 | |
|         60         0.8701         1.1805
 | |
|        100         0.8963         1.1336
 | |
|        120         0.9045         1.1203
 | |
|       1000         0.9646         1.0383
 | |
|      10000         0.9885         1.0118
 | |
|      50000         0.9948         1.0052
 | |
|     100000         0.9963         1.0037
 | |
|    1000000         0.9988         1.0012
 | |
| ________________________________________________
 | |
| 2-Sided Confidence Limits For Standard Deviation
 | |
| ________________________________________________
 | |
| Confidence level (two-sided)            =  0.0500000
 | |
| Standard Deviation                      =  1.0000000
 | |
| _____________________________________________
 | |
| Observations        Lower          Upper
 | |
|                     Limit          Limit
 | |
| _____________________________________________
 | |
|          2         0.4461        31.9102
 | |
|          3         0.5207         6.2847
 | |
|          4         0.5665         3.7285
 | |
|          5         0.5991         2.8736
 | |
|          6         0.6242         2.4526
 | |
|          7         0.6444         2.2021
 | |
|          8         0.6612         2.0353
 | |
|          9         0.6755         1.9158
 | |
|         10         0.6878         1.8256
 | |
|         15         0.7321         1.5771
 | |
|         20         0.7605         1.4606
 | |
|         30         0.7964         1.3443
 | |
|         40         0.8192         1.2840
 | |
|         50         0.8353         1.2461
 | |
|         60         0.8476         1.2197
 | |
|        100         0.8780         1.1617
 | |
|        120         0.8875         1.1454
 | |
|       1000         0.9580         1.0459
 | |
|      10000         0.9863         1.0141
 | |
|      50000         0.9938         1.0062
 | |
|     100000         0.9956         1.0044
 | |
|    1000000         0.9986         1.0014
 | |
| ________________________________________________
 | |
| 2-Sided Confidence Limits For Standard Deviation
 | |
| ________________________________________________
 | |
| Confidence level (two-sided)            =  0.0100000
 | |
| Standard Deviation                      =  1.0000000
 | |
| _____________________________________________
 | |
| Observations        Lower          Upper
 | |
|                     Limit          Limit
 | |
| _____________________________________________
 | |
|          2         0.3562       159.5759
 | |
|          3         0.4344        14.1244
 | |
|          4         0.4834         6.4675
 | |
|          5         0.5188         4.3960
 | |
|          6         0.5464         3.4848
 | |
|          7         0.5688         2.9798
 | |
|          8         0.5875         2.6601
 | |
|          9         0.6036         2.4394
 | |
|         10         0.6177         2.2776
 | |
|         15         0.6686         1.8536
 | |
|         20         0.7018         1.6662
 | |
|         30         0.7444         1.4867
 | |
|         40         0.7718         1.3966
 | |
|         50         0.7914         1.3410
 | |
|         60         0.8065         1.3026
 | |
|        100         0.8440         1.2200
 | |
|        120         0.8558         1.1973
 | |
|       1000         0.9453         1.0609
 | |
|      10000         0.9821         1.0185
 | |
|      50000         0.9919         1.0082
 | |
|     100000         0.9943         1.0058
 | |
|    1000000         0.9982         1.0018
 | |
| */
 | |
| 
 |