mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			183 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // negative_binomial_example2.cpp
 | |
| 
 | |
| // Copyright Paul A. Bristow 2007, 2010.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Simple example demonstrating use of the Negative Binomial Distribution.
 | |
| 
 | |
| #include <boost/math/distributions/negative_binomial.hpp>
 | |
|   using boost::math::negative_binomial_distribution;
 | |
|   using boost::math::negative_binomial; // typedef
 | |
| 
 | |
| // In a sequence of trials or events
 | |
| // (Bernoulli, independent, yes or no, succeed or fail)
 | |
| // with success_fraction probability p,
 | |
| // negative_binomial is the probability that k or fewer failures
 | |
| // preceed the r th trial's success.
 | |
| 
 | |
| #include <iostream>
 | |
| using std::cout;
 | |
| using std::endl;
 | |
| using std::setprecision;
 | |
| using std::showpoint;
 | |
| using std::setw;
 | |
| using std::left;
 | |
| using std::right;
 | |
| #include <limits>
 | |
| using std::numeric_limits;
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   cout << "Negative_binomial distribution - simple example 2" << endl;
 | |
|   // Construct a negative binomial distribution with:
 | |
|   // 8 successes (r), success fraction (p) 0.25 = 25% or 1 in 4 successes.
 | |
|   negative_binomial mynbdist(8, 0.25); // Shorter method using typedef.
 | |
| 
 | |
|   // Display (to check) properties of the distribution just constructed.
 | |
|   cout << "mean(mynbdist) = " << mean(mynbdist) << endl; // 24
 | |
|   cout << "mynbdist.successes() = " << mynbdist.successes()  << endl; // 8
 | |
|   // r th successful trial, after k failures, is r + k th trial.
 | |
|   cout << "mynbdist.success_fraction() = " << mynbdist.success_fraction() << endl; 
 | |
|   // success_fraction = failures/successes or k/r = 0.25 or 25%. 
 | |
|   cout << "mynbdist.percent success  = " << mynbdist.success_fraction() * 100 << "%"  << endl;
 | |
|   // Show as % too.
 | |
|   // Show some cumulative distribution function values for failures k = 2 and 8
 | |
|   cout << "cdf(mynbdist, 2.) = " << cdf(mynbdist, 2.) << endl; // 0.000415802001953125
 | |
|   cout << "cdf(mynbdist, 8.) = " << cdf(mynbdist, 8.) << endl; // 0.027129956288263202
 | |
|   cout << "cdf(complement(mynbdist, 8.)) = " << cdf(complement(mynbdist, 8.)) << endl; // 0.9728700437117368
 | |
|   // Check that cdf plus its complement is unity.
 | |
|   cout << "cdf + complement = " << cdf(mynbdist, 8.) + cdf(complement(mynbdist, 8.))  << endl; // 1
 | |
|   // Note: No complement for pdf! 
 | |
| 
 | |
|   // Compare cdf with sum of pdfs.
 | |
|   double sum = 0.; // Calculate the sum of all the pdfs,
 | |
|   int k = 20; // for 20 failures
 | |
|   for(signed i = 0; i <= k; ++i)
 | |
|   {
 | |
|     sum += pdf(mynbdist, double(i));
 | |
|   }
 | |
|   // Compare with the cdf
 | |
|   double cdf8 = cdf(mynbdist, static_cast<double>(k));
 | |
|   double diff = sum - cdf8; // Expect the diference to be very small.
 | |
|   cout << setprecision(17) << "Sum pdfs = " << sum << ' ' // sum = 0.40025683281803698
 | |
|   << ", cdf = " << cdf(mynbdist, static_cast<double>(k)) //  cdf = 0.40025683281803687
 | |
|   << ", difference = "  // difference = 0.50000000000000000
 | |
|   << setprecision(1) << diff/ (std::numeric_limits<double>::epsilon() * sum)
 | |
|   << " in epsilon units." << endl;
 | |
| 
 | |
|   // Note: Use boost::math::tools::epsilon rather than std::numeric_limits
 | |
|   //  to cover RealTypes that do not specialize numeric_limits.
 | |
| 
 | |
| //[neg_binomial_example2
 | |
| 
 | |
|   // Print a table of values that can be used to plot
 | |
|   // using Excel, or some other superior graphical display tool.
 | |
| 
 | |
|   cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table.
 | |
|   cout << showpoint << endl; // include trailing zeros.
 | |
|   // This is a maximum possible precision for the type (here double) to suit a reference table.
 | |
|   int maxk = static_cast<int>(2. * mynbdist.successes() /  mynbdist.success_fraction());
 | |
|   // This maxk shows most of the range of interest, probability about 0.0001 to 0.999.
 | |
|   cout << "\n"" k            pdf                      cdf""\n" << endl;
 | |
|   for (int k = 0; k < maxk; k++)
 | |
|   {
 | |
|     cout << right << setprecision(17) << showpoint
 | |
|       << right << setw(3) << k  << ", "
 | |
|       << left << setw(25) << pdf(mynbdist, static_cast<double>(k))
 | |
|       << left << setw(25) << cdf(mynbdist, static_cast<double>(k))
 | |
|       << endl;
 | |
|   }
 | |
|   cout << endl;
 | |
| //] [/ neg_binomial_example2]
 | |
|   return 0;
 | |
| } // int main()
 | |
| 
 | |
| /*
 | |
| 
 | |
| Output is:
 | |
| 
 | |
| negative_binomial distribution - simple example 2
 | |
| mean(mynbdist) = 24
 | |
| mynbdist.successes() = 8
 | |
| mynbdist.success_fraction() = 0.25
 | |
| mynbdist.percent success  = 25%
 | |
| cdf(mynbdist, 2.) = 0.000415802001953125
 | |
| cdf(mynbdist, 8.) = 0.027129956288263202
 | |
| cdf(complement(mynbdist, 8.)) = 0.9728700437117368
 | |
| cdf + complement = 1
 | |
| Sum pdfs = 0.40025683281803692 , cdf = 0.40025683281803687, difference = 0.25 in epsilon units.
 | |
| 
 | |
| //[neg_binomial_example2_1
 | |
|  k            pdf                      cdf
 | |
|   0, 1.5258789062500000e-005  1.5258789062500003e-005  
 | |
|   1, 9.1552734375000000e-005  0.00010681152343750000   
 | |
|   2, 0.00030899047851562522   0.00041580200195312500   
 | |
|   3, 0.00077247619628906272   0.0011882781982421875    
 | |
|   4, 0.0015932321548461918    0.0027815103530883789    
 | |
|   5, 0.0028678178787231476    0.0056493282318115234    
 | |
|   6, 0.0046602040529251142    0.010309532284736633     
 | |
|   7, 0.0069903060793876605    0.017299838364124298     
 | |
|   8, 0.0098301179241389001    0.027129956288263202     
 | |
|   9, 0.013106823898851871     0.040236780187115073     
 | |
|  10, 0.016711200471036140     0.056947980658151209     
 | |
|  11, 0.020509200578089786     0.077457181236241013     
 | |
|  12, 0.024354675686481652     0.10181185692272265      
 | |
|  13, 0.028101548869017230     0.12991340579173993      
 | |
|  14, 0.031614242477644432     0.16152764826938440      
 | |
|  15, 0.034775666725408917     0.19630331499479325      
 | |
|  16, 0.037492515688331451     0.23379583068312471      
 | |
|  17, 0.039697957787645101     0.27349378847076977      
 | |
|  18, 0.041352039362130305     0.31484582783290005      
 | |
|  19, 0.042440250924291580     0.35728607875719176      
 | |
|  20, 0.042970754060845245     0.40025683281803687      
 | |
|  21, 0.042970754060845225     0.44322758687888220      
 | |
|  22, 0.042482450037426581     0.48571003691630876      
 | |
|  23, 0.041558918514873783     0.52726895543118257      
 | |
|  24, 0.040260202311284021     0.56752915774246648      
 | |
|  25, 0.038649794218832620     0.60617895196129912      
 | |
|  26, 0.036791631035234917     0.64297058299653398      
 | |
|  27, 0.034747651533277427     0.67771823452981139      
 | |
|  28, 0.032575923312447595     0.71029415784225891      
 | |
|  29, 0.030329307911589130     0.74062346575384819      
 | |
|  30, 0.028054609818219924     0.76867807557206813      
 | |
|  31, 0.025792141284492545     0.79447021685656061      
 | |
|  32, 0.023575629142856460     0.81804584599941710      
 | |
|  33, 0.021432390129869489     0.83947823612928651      
 | |
|  34, 0.019383705779220189     0.85886194190850684      
 | |
|  35, 0.017445335201298231     0.87630727710980494      
 | |
|  36, 0.015628112784496322     0.89193538989430121      
 | |
|  37, 0.013938587078064250     0.90587397697236549      
 | |
|  38, 0.012379666154859701     0.91825364312722524      
 | |
|  39, 0.010951243136991251     0.92920488626421649      
 | |
|  40, 0.0096507830144735539    0.93885566927869002      
 | |
|  41, 0.0084738582566109364    0.94732952753530097      
 | |
|  42, 0.0074146259745345548    0.95474415350983555      
 | |
|  43, 0.0064662435824429246    0.96121039709227851      
 | |
|  44, 0.0056212231142827853    0.96683162020656122      
 | |
|  45, 0.0048717266990450708    0.97170334690560634      
 | |
|  46, 0.0042098073105878630    0.97591315421619418      
 | |
|  47, 0.0036275999165703964    0.97954075413276465      
 | |
|  48, 0.0031174686783026818    0.98265822281106729      
 | |
|  49, 0.0026721160099737302    0.98533033882104104      
 | |
|  50, 0.0022846591885275322    0.98761499800956853      
 | |
|  51, 0.0019486798960970148    0.98956367790566557      
 | |
|  52, 0.0016582516423517923    0.99122192954801736      
 | |
|  53, 0.0014079495076571762    0.99262987905567457      
 | |
|  54, 0.0011928461106539983    0.99382272516632852      
 | |
|  55, 0.0010084971662802015    0.99483122233260868      
 | |
|  56, 0.00085091948404891532   0.99568214181665760      
 | |
|  57, 0.00071656377604119542   0.99639870559269883      
 | |
|  58, 0.00060228420831048650   0.99700098980100937      
 | |
|  59, 0.00050530624256557675   0.99750629604357488      
 | |
|  60, 0.00042319397814867202   0.99792949002172360      
 | |
|  61, 0.00035381791615708398   0.99828330793788067      
 | |
|  62, 0.00029532382517950324   0.99857863176306016      
 | |
|  63, 0.00024610318764958566   0.99882473495070978      
 | |
| //] [neg_binomial_example2_1 end of Quickbook]
 | |
| 
 | |
| */
 |