mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			486 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			486 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // root_finding_fith.cpp
 | |
| 
 | |
| // Copyright Paul A. Bristow 2014.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Example of finding fifth root using Newton-Raphson, Halley, Schroder, TOMS748 .
 | |
| 
 | |
| // Note that this file contains Quickbook mark-up as well as code
 | |
| // and comments, don't change any of the special comment mark-ups!
 | |
| 
 | |
| // To get (copious!) diagnostic output, add make this define here or elsewhere.
 | |
| //#define BOOST_MATH_INSTRUMENT
 | |
| 
 | |
| 
 | |
| //[root_fifth_headers
 | |
| /*
 | |
| This example demonstrates how to use the Boost.Math tools for root finding,
 | |
| taking the fifth root function (fifth_root) as an example.
 | |
| It shows how use of derivatives can improve the speed.
 | |
| 
 | |
| First some includes that will be needed.
 | |
| Using statements are provided to list what functions are being used in this example:
 | |
| you can of course qualify the names in other ways.
 | |
| */
 | |
| 
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| using boost::math::policies::policy;
 | |
| using boost::math::tools::newton_raphson_iterate;
 | |
| using boost::math::tools::halley_iterate;
 | |
| using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
 | |
| using boost::math::tools::bracket_and_solve_root;
 | |
| using boost::math::tools::toms748_solve;
 | |
| 
 | |
| #include <boost/math/special_functions/next.hpp>
 | |
| 
 | |
| #include <tuple>
 | |
| #include <utility> // pair, make_pair
 | |
| 
 | |
| //] [/root_finding_headers]
 | |
| 
 | |
| #include <iostream>
 | |
| using std::cout; using std::endl;
 | |
| #include <iomanip>
 | |
| using std::setw; using std::setprecision;
 | |
| #include <limits>
 | |
| using std::numeric_limits;
 | |
| 
 | |
| /*
 | |
| //[root_finding_fifth_1
 | |
| Let's suppose we want to find the fifth root of a number.
 | |
| 
 | |
| The equation we want to solve is:
 | |
| 
 | |
| __spaces ['f](x) = x[fifth]
 | |
| 
 | |
| We will first solve this without using any information
 | |
| about the slope or curvature of the fifth function.
 | |
| 
 | |
| If your differentiation is a little rusty
 | |
| (or you are faced with an equation whose complexity is daunting,
 | |
| then you can get help, for example from the invaluable
 | |
| 
 | |
| http://www.wolframalpha.com/ site
 | |
| 
 | |
| entering the commmand
 | |
| 
 | |
|   differentiate x^5
 | |
| 
 | |
| or the Wolfram Language command
 | |
| 
 | |
|   D[x^5, x]
 | |
| 
 | |
| gives the output
 | |
| 
 | |
|   d/dx(x^5) = 5 x^4
 | |
| 
 | |
| and to get the second differential, enter
 | |
| 
 | |
|   second differentiate x^5
 | |
| 
 | |
| or the Wolfram Language
 | |
| 
 | |
|   D[x^5, {x, 2}]
 | |
| 
 | |
| to get the output
 | |
| 
 | |
|   d^2/dx^2(x^5) = 20 x^3
 | |
| 
 | |
| or
 | |
| 
 | |
|   20 x^3
 | |
| 
 | |
| To get a reference value we can enter
 | |
| 
 | |
|   fifth root 3126
 | |
| 
 | |
| or
 | |
| 
 | |
|   N[3126^(1/5), 50]
 | |
| 
 | |
| to get a result with a precision of  50 decimal digits
 | |
| 
 | |
|   5.0003199590478625588206333405631053401128722314376
 | |
| 
 | |
| (We could also get a reference value using Boost.Multiprecision).
 | |
| 
 | |
| We then show how adding what we can know, for this function, about the slope,
 | |
| the 1st derivation /f'(x)/, will speed homing in on the solution,
 | |
| and then finally how adding the curvature /f''(x)/ as well will improve even more.
 | |
| 
 | |
| The 1st and 2nd derivatives of x[fifth] are:
 | |
| 
 | |
| __spaces ['f]\'(x) = 2x[sup2]
 | |
| 
 | |
| __spaces ['f]\'\'(x) = 6x
 | |
| 
 | |
| */
 | |
| 
 | |
| //] [/root_finding_fifth_1]
 | |
| 
 | |
| //[root_finding_fifth_functor_noderiv
 | |
| 
 | |
| template <class T>
 | |
| struct fifth_functor_noderiv
 | |
| { // fifth root of x using only function - no derivatives.
 | |
|   fifth_functor_noderiv(T const& to_find_root_of) : value(to_find_root_of)
 | |
|   { // Constructor stores value to find root of.
 | |
|     // For example: calling fifth_functor<T>(x) to get fifth root of x.
 | |
|   }
 | |
|   T operator()(T const& x)
 | |
|   { //! \returns f(x) - value.
 | |
|     T fx = x*x*x*x*x - value; // Difference (estimate x^5 - value).
 | |
|     return fx;
 | |
|   }
 | |
| private:
 | |
|   T value; // to be 'fifth_rooted'.
 | |
| };
 | |
| 
 | |
| //] [/root_finding_fifth_functor_noderiv]
 | |
| 
 | |
| //cout  << ", std::numeric_limits<" << typeid(T).name()  << ">::digits = " << digits
 | |
| //   << ", accuracy " << get_digits << " bits."<< endl;
 | |
| 
 | |
| 
 | |
| /*`Implementing the fifth root function itself is fairly trivial now:
 | |
| the hardest part is finding a good approximation to begin with.
 | |
| In this case we'll just divide the exponent by five.
 | |
| (There are better but more complex guess algorithms used in 'real-life'.)
 | |
| 
 | |
| fifth root function is 'Really Well Behaved' in that it is monotonic
 | |
| and has only one root
 | |
| (we leave negative values 'as an exercise for the student').
 | |
| */
 | |
| 
 | |
| //[root_finding_fifth_noderiv
 | |
| 
 | |
| template <class T>
 | |
| T fifth_noderiv(T x)
 | |
| { //! \returns fifth root of x using bracket_and_solve (no derivatives).
 | |
|   using namespace std;  // Help ADL of std functions.
 | |
|   using namespace boost::math::tools; // For bracket_and_solve_root.
 | |
| 
 | |
|   int exponent;
 | |
|   frexp(x, &exponent); // Get exponent of z (ignore mantissa).
 | |
|   T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by five.
 | |
|   T factor = 2; // To multiply and divide guess to bracket.
 | |
|   // digits used to control how accurate to try to make the result.
 | |
|   // int digits =  3 * std::numeric_limits<T>::digits / 4; // 3/4 maximum possible binary digits accuracy for type T.
 | |
|   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
| 
 | |
|   //boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();
 | |
|   // (std::numeric_limits<boost::uintmax_t>::max)() = 18446744073709551615
 | |
|   // which is more than anyone might wish to wait for!!!
 | |
|   // so better to choose some reasonable estimate of how many iterations may be needed.
 | |
| 
 | |
|   const boost::uintmax_t maxit = 50; // Chosen max iterations,
 | |
|   // but updated on exit with actual iteration count.
 | |
| 
 | |
|   // We could also have used a maximum iterations provided by any policy:
 | |
|   // boost::uintmax_t max_it = policies::get_max_root_iterations<Policy>();
 | |
| 
 | |
|   boost::uintmax_t it = maxit; // Initally our chosen max iterations,
 | |
| 
 | |
|   bool is_rising = true; // So if result if guess^5 is too low, try increasing guess.
 | |
|   eps_tolerance<double> tol(digits);
 | |
|   std::pair<T, T> r =
 | |
|     bracket_and_solve_root(fifth_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
 | |
|   // because the iteration count is updating,
 | |
|   // you can't call with a literal maximum iterations value thus:
 | |
|   //bracket_and_solve_root(fifth_functor_noderiv<T>(x), guess, factor, is_rising, tol, 20);
 | |
| 
 | |
|   // Can show how many iterations (this information is lost outside fifth_noderiv).
 | |
|   cout << "Iterations " << it << endl;
 | |
|   if (it >= maxit)
 | |
|   { // Failed to converge (or is jumping between bracket values).
 | |
|     cout << "Unable to locate solution in chosen iterations:"
 | |
|       " Current best guess is between " << r.first << " and " << r.second << endl;
 | |
|   }
 | |
|   T distance = float_distance(r.first, r.second);
 | |
|   if (distance > 0)
 | |
|   { //
 | |
|     std::cout << distance << " bits separate the bracketing values." << std::endl;
 | |
|     for (int i = 0; i < distance; i++)
 | |
|     { // Show all the values within the bracketing values.
 | |
|       std::cout << float_advance(r.first, i) << std::endl;
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|   { // distance == 0 and  r.second == r.first
 | |
|     std::cout << "Converged to a single value " << r.first << std::endl;
 | |
|   }
 | |
| 
 | |
|   return r.first + (r.second - r.first) / 2;  // return midway between bracketed interval.
 | |
| } // T fifth_noderiv(T x)
 | |
| 
 | |
| //] [/root_finding_fifth_noderiv]
 | |
| 
 | |
| 
 | |
| 
 | |
| // maxit = 10
 | |
| // Unable to locate solution in chosen iterations: Current best guess is between 3.0365889718756613 and 3.0365889718756627
 | |
| 
 | |
| 
 | |
| /*`
 | |
| We now solve the same problem, but using more information about the function,
 | |
| to show how this can speed up finding the best estimate of the root.
 | |
| 
 | |
| For this function, the 1st differential (the slope of the tangent to a curve at any point) is known.
 | |
| 
 | |
| [@http://en.wikipedia.org/wiki/Derivative#Derivatives_of_elementary_functions Derivatives]
 | |
| gives some reminders.
 | |
| 
 | |
| Using the rule that the derivative of x^n for positive n (actually all nonzero n) is nx^n-1,
 | |
| allows use to get the 1st differential as 3x^2.
 | |
| 
 | |
| To see how this extra information is used to find the root, view this demo:
 | |
| [@http://en.wikipedia.org/wiki/Newton%27s_methodNewton Newton-Raphson iterations].
 | |
| 
 | |
| We need to define a different functor that returns
 | |
| both the evaluation of the function to solve, along with its first derivative:
 | |
| 
 | |
| To \'return\' two values, we use a pair of floating-point values:
 | |
| */
 | |
| 
 | |
| //[root_finding_fifth_functor_1stderiv
 | |
| 
 | |
| template <class T>
 | |
| struct fifth_functor_1stderiv
 | |
| { // Functor returning function and 1st derivative.
 | |
| 
 | |
|   fifth_functor_1stderiv(T const& target) : value(target)
 | |
|   { // Constructor stores the value to be 'fifth_rooted'.
 | |
|   }
 | |
| 
 | |
|   std::pair<T, T> operator()(T const& z) // z is best estimate so far.
 | |
|   { // Return both f(x) and first derivative f'(x).
 | |
|     T fx = z*z*z*z*z - value; // Difference estimate fx = x^5 - value.
 | |
|     T d1x = 5 * z*z*z*z; // 1st derivative d1x = 5x^4.
 | |
|     return std::make_pair(fx, d1x); // 'return' both fx and d1x.
 | |
|   }
 | |
| private:
 | |
|   T value; // to be 'fifth_rooted'.
 | |
| }; // fifth_functor_1stderiv
 | |
| 
 | |
| //] [/root_finding_fifth_functor_1stderiv]
 | |
| 
 | |
| 
 | |
| /*`Our fifth root function using fifth_functor_1stderiv is now:*/
 | |
| 
 | |
| //[root_finding_fifth_1deriv
 | |
| 
 | |
| template <class T>
 | |
| T fifth_1deriv(T x)
 | |
| { //! \return fifth root of x using 1st derivative and Newton_Raphson.
 | |
|   using namespace std; // For frexp, ldexp, numeric_limits.
 | |
|   using namespace boost::math::tools; // For newton_raphson_iterate.
 | |
| 
 | |
|   int exponent;
 | |
|   frexp(x, &exponent); // Get exponent of x (ignore mantissa).
 | |
|   T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by three.
 | |
|   // Set an initial bracket interval.
 | |
|   T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
 | |
|   T max = ldexp(2., exponent / 5);// Maximum possible value is twice our guess.
 | |
| 
 | |
|   // digits used to control how accurate to try to make the result.
 | |
|   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
| 
 | |
|   const boost::uintmax_t maxit = 20; // Optionally limit the number of iterations.
 | |
|   boost::uintmax_t it = maxit; // limit the number of iterations.
 | |
|   //cout << "Max Iterations " << maxit << endl; //
 | |
|   T result = newton_raphson_iterate(fifth_functor_1stderiv<T>(x), guess, min, max, digits, it);
 | |
|   // Can check and show how many iterations (updated by newton_raphson_iterate).
 | |
|   cout << it << " iterations (from max of " << maxit << ")" << endl;
 | |
|   return result;
 | |
| } // fifth_1deriv
 | |
| 
 | |
| //] [/root_finding_fifth_1deriv]
 | |
| 
 | |
| //  int get_digits = (digits * 2) /3; // Two thirds of maximum possible accuracy.
 | |
| 
 | |
| //boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();
 | |
| // the default (std::numeric_limits<boost::uintmax_t>::max)() = 18446744073709551615
 | |
| // which is more than we might wish to wait for!!!  so we can reduce it
 | |
| 
 | |
| /*`
 | |
| Finally need to define yet another functor that returns
 | |
| both the evaluation of the function to solve,
 | |
| along with its first and second derivatives:
 | |
| 
 | |
| f''(x) = 3 * 3x
 | |
| 
 | |
| To \'return\' three values, we use a tuple of three floating-point values:
 | |
| */
 | |
| 
 | |
| //[root_finding_fifth_functor_2deriv
 | |
| 
 | |
| template <class T>
 | |
| struct fifth_functor_2deriv
 | |
| { // Functor returning both 1st and 2nd derivatives.
 | |
|   fifth_functor_2deriv(T const& to_find_root_of) : value(to_find_root_of)
 | |
|   { // Constructor stores value to find root of, for example:
 | |
|   }
 | |
| 
 | |
|   // using boost::math::tuple; // to return three values.
 | |
|   std::tuple<T, T, T> operator()(T const& x)
 | |
|   { // Return both f(x) and f'(x) and f''(x).
 | |
|     T fx = x*x*x*x*x - value; // Difference (estimate x^3 - value).
 | |
|     T dx = 5 * x*x*x*x; // 1st derivative = 5x^4.
 | |
|     T d2x = 20 * x*x*x; // 2nd derivative = 20 x^3
 | |
|     return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
 | |
|   }
 | |
| private:
 | |
|   T value; // to be 'fifth_rooted'.
 | |
| }; // struct fifth_functor_2deriv
 | |
| 
 | |
| //] [/root_finding_fifth_functor_2deriv]
 | |
| 
 | |
| 
 | |
| /*`Our fifth function is now:*/
 | |
| 
 | |
| //[root_finding_fifth_2deriv
 | |
| 
 | |
| template <class T>
 | |
| T fifth_2deriv(T x)
 | |
| { // return fifth root of x using 1st and 2nd derivatives and Halley.
 | |
|   using namespace std;  // Help ADL of std functions.
 | |
|   using namespace boost::math; // halley_iterate
 | |
| 
 | |
|   int exponent;
 | |
|   frexp(x, &exponent); // Get exponent of z (ignore mantissa).
 | |
|   T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by three.
 | |
|   T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
 | |
|   T max = ldexp(2., exponent / 5); // Maximum possible value is twice our guess.
 | |
| 
 | |
|   int digits = std::numeric_limits<T>::digits / 2; // Half maximum possible binary digits accuracy for type T.
 | |
|   const boost::uintmax_t maxit = 50;
 | |
|   boost::uintmax_t it = maxit;
 | |
|   T result = halley_iterate(fifth_functor_2deriv<T>(x), guess, min, max, digits, it);
 | |
|   // Can show how many iterations (updated by halley_iterate).
 | |
|   cout << it << " iterations (from max of " << maxit << ")" << endl;
 | |
| 
 | |
|   return result;
 | |
| } // fifth_2deriv(x)
 | |
| 
 | |
| //] [/root_finding_fifth_2deriv]
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 
 | |
|   //[root_finding_example_1
 | |
|   cout << "fifth Root finding (fifth) Example." << endl;
 | |
|   // Show all possibly significant decimal digits.
 | |
|   cout.precision(std::numeric_limits<double>::max_digits10);
 | |
|   // or use   cout.precision(max_digits10 = 2 + std::numeric_limits<double>::digits * 3010/10000);
 | |
|   try
 | |
|   { // Always use try'n'catch blocks with Boost.Math to get any error messages.
 | |
| 
 | |
|     double v27 = 3125; // Example of a value that has an exact integer fifth root.
 | |
|     // exact value of fifth root is exactly 5.
 | |
| 
 | |
|     std::cout << "Fifth root  of " << v27 << " is " << 5 << std::endl;
 | |
| 
 | |
|     double v28 = v27+1; // Example of a value whose fifth root is *not* exactly representable.
 | |
|     // Value of fifth root is 5.0003199590478625588206333405631053401128722314376 (50 decimal digits precision)
 | |
|     // and to std::numeric_limits<double>::max_digits10 double precision (usually 17) is
 | |
| 
 | |
|     double root5v2 = static_cast<double>(5.0003199590478625588206333405631053401128722314376);
 | |
| 
 | |
|     std::cout << "Fifth root  of " << v28 << " is "  << root5v2 << std::endl;
 | |
| 
 | |
|     // Using bracketing:
 | |
|     double r = fifth_noderiv(v27);
 | |
|     cout << "fifth_noderiv(" << v27 << ") = " << r << endl;
 | |
| 
 | |
|     r = fifth_noderiv(v28);
 | |
|     cout << "fifth_noderiv(" << v28 << ") = " << r << endl;
 | |
| 
 | |
|     // Using 1st differential Newton-Raphson:
 | |
|     r = fifth_1deriv(v27);
 | |
|     cout << "fifth_1deriv(" << v27 << ") = " << r << endl;
 | |
|     r = fifth_1deriv(v28);
 | |
|     cout << "fifth_1deriv(" << v28 << ") = " << r << endl;
 | |
| 
 | |
|     // Using Halley with 1st and 2nd differentials.
 | |
|     r = fifth_2deriv(v27);
 | |
|     cout << "fifth_2deriv(" << v27 << ") = " << r << endl;
 | |
|     r = fifth_2deriv(v28);
 | |
|     cout << "fifth_2deriv(" << v28 << ") = " << r << endl;
 | |
|   }
 | |
|   catch (const std::exception& e)
 | |
|   { // Always useful to include try & catch blocks because default policies
 | |
|     // are to throw exceptions on arguments that cause errors like underflow, overflow.
 | |
|     // Lacking try & catch blocks, the program will abort without a message below,
 | |
|     // which may give some helpful clues as to the cause of the exception.
 | |
|     std::cout <<
 | |
|       "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
 | |
|   }
 | |
|   //] [/root_finding_example_1
 | |
|   return 0;
 | |
| }  // int main()
 | |
| 
 | |
| //[root_finding_example_output
 | |
| /*`
 | |
| Normal output is:
 | |
| 
 | |
| [pre
 | |
| 1>  Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Release\root_finding_fifth.exe"
 | |
| 1>  fifth Root finding (fifth) Example.
 | |
| 1>  Fifth root  of 3125 is 5
 | |
| 1>  Fifth root  of 3126 is 5.0003199590478626
 | |
| 1>  Iterations 10
 | |
| 1>  Converged to a single value 5
 | |
| 1>  fifth_noderiv(3125) = 5
 | |
| 1>  Iterations 11
 | |
| 1>  2 bits separate the bracketing values.
 | |
| 1>  5.0003199590478609
 | |
| 1>  5.0003199590478618
 | |
| 1>  fifth_noderiv(3126) = 5.0003199590478618
 | |
| 1>  6 iterations (from max of 20)
 | |
| 1>  fifth_1deriv(3125) = 5
 | |
| 1>  7 iterations (from max of 20)
 | |
| 1>  fifth_1deriv(3126) = 5.0003199590478626
 | |
| 1>  4 iterations (from max of 50)
 | |
| 1>  fifth_2deriv(3125) = 5
 | |
| 1>  4 iterations (from max of 50)
 | |
| 1>  fifth_2deriv(3126) = 5.0003199590478626
 | |
| [/pre]
 | |
| 
 | |
| to get some (much!) diagnostic output we can add
 | |
| 
 | |
| #define BOOST_MATH_INSTRUMENT
 | |
| 
 | |
| [pre
 | |
| 1>  fifth Root finding (fifth) Example.
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:537 a = 4 b = 8 fa = -2101 fb = 29643 count = 18
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:340  a = 4.264742943548387 b = 8
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:352  a = 4.264742943548387 b = 5.1409225585147951
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:259  a = 4.264742943548387 b = 5.1409225585147951 d = 8 e = 4 fa = -1714.2037505671719 fb = 465.91652114644285 fd = 29643 fe = -2101
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:267 q11 = -3.735257056451613 q21 = -0.045655399937094755 q31 = 0.68893005658139972 d21 = -2.9047328414222999 d31 = -0.18724955838500826
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:275 q22 = -0.15074699539567221 q32 = 0.007740525571111408 d32 = -0.13385363287680208 q33 = 0.074868009790687237 c = 5.0362815354915851
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:388  a = 4.264742943548387 b = 5.0362815354915851
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:259  a = 4.264742943548387 b = 5.0362815354915851 d = 5.1409225585147951 e = 8 fa = -1714.2037505671719 fb = 115.03721886368339 fd = 465.91652114644285 fe = 29643
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:267 q11 = -0.045655399937094755 q21 = -0.034306988726112195 q31 = 0.7230181097615842 d21 = -0.1389480117493222 d31 = -0.048520482181613811
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:275 q22 = -0.00036345624935100459 q32 = 0.011175908093791367 d32 = -0.0030375853617102483 q33 = 0.00014618657296010219 c = 4.999083147976723
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:408  a = 4.999083147976723 b = 5.0362815354915851
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:433  a = 4.999083147976723 b = 5.0008904277935091
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:434  tol = -0.00036152225583956088
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:259  a = 4.999083147976723 b = 5.0008904277935091 d = 5.0362815354915851 e = 4.264742943548387 fa = -2.8641119933622576 fb = 2.7835781082976609 fd = 115.03721886368339 fe = -1714.2037505671719
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:267 q11 = -0.048520482181613811 q21 = -0.00087760104664616457 q31 = 0.00091652546535745522 d21 = -0.036268708744722128 d31 = -0.00089075435142862297
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:275 q22 = -1.9862562616034592e-005 q32 = 3.1952597740788757e-007 d32 = -1.2833778805050512e-005 q33 = 1.1763429980834706e-008 c = 5.0000000047314881
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:388  a = 4.999083147976723 b = 5.0000000047314881
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:259  a = 4.999083147976723 b = 5.0000000047314881 d = 5.0008904277935091 e = 5.0362815354915851 fa = -2.8641119933622576 fb = 1.4785900475544622e-005 fd = 2.7835781082976609 fe = 115.03721886368339
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:267 q11 = -0.00087760104664616457 q21 = -4.7298032238887272e-009 q31 = 0.00091685202154135855 d21 = -0.00089042779182425238 d31 = -4.7332236912279757e-009
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:275 q22 = -1.6486403607318402e-012 q32 = 1.7346209428817704e-012 d32 = -1.6858463963666777e-012 q33 = 9.0382569995250912e-016 c = 5
 | |
| 1>  I:\modular-boost\boost/math/tools/toms748_solve.hpp:592 max_iter = 10 count = 7
 | |
| 1>  Iterations 20
 | |
| 1>  0 bits separate brackets.
 | |
| 1>  fifth_noderiv(3125) = 5
 | |
| ]
 | |
| */
 | |
| //] [/root_finding_example_output]
 |