mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			922 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			922 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2005.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/type_traits/is_same.hpp>
 | |
| #include <boost/type_traits/is_floating_point.hpp>
 | |
| #include <boost/mpl/if.hpp>
 | |
| #include <boost/static_assert.hpp>
 | |
| #include <boost/math/complex.hpp>
 | |
| 
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <cmath>
 | |
| #include <typeinfo>
 | |
| 
 | |
| #ifdef BOOST_NO_STDC_NAMESPACE
 | |
| namespace std{ using ::sqrt; using ::tan; using ::tanh; }
 | |
| #endif
 | |
| 
 | |
| #ifndef VERBOSE
 | |
| #undef BOOST_TEST_MESSAGE
 | |
| #define BOOST_TEST_MESSAGE(x)
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // check_complex:
 | |
| // Verifies that expected value "a" and found value "b" have a relative error
 | |
| // less than "max_error" epsilons.  Note that relative error is calculated for
 | |
| // the complex number as a whole; this means that the error in the real or 
 | |
| // imaginary parts alone can be much higher than max_error when the real and 
 | |
| // imaginary parts are of very different magnitudes.  This is important, because
 | |
| // the Hull et al analysis of the acos and asin algorithms requires that very small
 | |
| // real/imaginary components can be safely ignored if they are negligible compared
 | |
| // to the other component.
 | |
| //
 | |
| template <class T>
 | |
| bool check_complex(const std::complex<T>& a, const std::complex<T>& b, int max_error)
 | |
| {
 | |
|    //
 | |
|    // a is the expected value, b is what was actually found,
 | |
|    // compute | (a-b)/b | and compare with max_error which is the 
 | |
|    // multiple of E to permit:
 | |
|    //
 | |
|    bool result = true;
 | |
|    static const std::complex<T> zero(0);
 | |
|    static const T eps = std::pow(static_cast<T>(std::numeric_limits<T>::radix), static_cast<T>(1 - std::numeric_limits<T>::digits));
 | |
|    if(a == zero)
 | |
|    {
 | |
|       if(b != zero)
 | |
|       {
 | |
|          if(boost::math::fabs(b) > eps)
 | |
|          {
 | |
|             result = false;
 | |
|             BOOST_ERROR("Expected {0,0} but got: " << b);
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             BOOST_TEST_MESSAGE("Expected {0,0} but got: " << b);
 | |
|          }
 | |
|       }
 | |
|       return result;
 | |
|    }
 | |
|    else if(b == zero)
 | |
|    {
 | |
|       if(boost::math::fabs(a) > eps)
 | |
|       {
 | |
|          BOOST_ERROR("Found {0,0} but expected: " << a);
 | |
|          return false;;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          BOOST_TEST_MESSAGE("Found {0,0} but expected: " << a);
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    if((boost::math::isnan)(a.real()))
 | |
|    {
 | |
|       BOOST_ERROR("Found non-finite value for real part: " << a);
 | |
|    }
 | |
|    if((boost::math::isnan)(a.imag()))
 | |
|    {
 | |
|       BOOST_ERROR("Found non-finite value for inaginary part: " << a);
 | |
|    }
 | |
| 
 | |
|    T rel = boost::math::fabs((b-a)/b) / eps;
 | |
|    if( rel > max_error)
 | |
|    {
 | |
|       result = false;
 | |
|       BOOST_ERROR("Error in result exceeded permitted limit of " << max_error << " (actual relative error was " << rel << "e).  Found " << b << " expected " << a);
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // test_inverse_trig:
 | |
| // This is nothing more than a sanity check, computes trig(atrig(z)) 
 | |
| // and compare the result to z.  Note that:
 | |
| //
 | |
| // atrig(trig(z)) != z
 | |
| //
 | |
| // for certain z because the inverse trig functions are multi-valued, this 
 | |
| // essentially rules this out as a testing method.  On the other hand:
 | |
| //
 | |
| // trig(atrig(z))
 | |
| //
 | |
| // can vary compare to z by an arbitrarily large amount.  For one thing we 
 | |
| // have no control over the implementation of the trig functions, for another
 | |
| // even if both functions were accurate to 1ulp (as accurate as transcendental
 | |
| // number can get, thanks to the "table makers dilemma"), the errors can still
 | |
| // be arbitrarily large - often the inverse trig functions will map a very large
 | |
| // part of the complex domain into a small output domain, so you can never get
 | |
| // back exactly where you started from.  Consequently these tests are no more than
 | |
| // sanity checks (just verifies that signs are correct and so on).
 | |
| //
 | |
| template <class T>
 | |
| void test_inverse_trig(T)
 | |
| {
 | |
|    using namespace std;
 | |
| 
 | |
|    static const T interval = static_cast<T>(2.0L/128.0L);
 | |
| 
 | |
|    T x, y;
 | |
| 
 | |
|    std::cout << std::setprecision(std::numeric_limits<T>::digits10+2);
 | |
| 
 | |
|    for(x = -1; x <= 1; x += interval)
 | |
|    {
 | |
|       for(y = -1; y <= 1; y += interval)
 | |
|       {
 | |
|          // acos:
 | |
|          std::complex<T> val(x, y), inter, result;
 | |
|          inter = boost::math::acos(val);
 | |
|          result = cos(inter);
 | |
|          if(!check_complex(val, result, 50))
 | |
|          {
 | |
|             std::cout << "Error in testing inverse complex cos for type " << typeid(T).name() << std::endl;
 | |
|             std::cout << "   val=             " << val << std::endl;
 | |
|             std::cout << "   acos(val) =      " << inter << std::endl;
 | |
|             std::cout << "   cos(acos(val)) = " << result << std::endl;
 | |
|          }
 | |
|          // asin:
 | |
|          inter = boost::math::asin(val);
 | |
|          result = sin(inter);
 | |
|          if(!check_complex(val, result, 5))
 | |
|          {
 | |
|             std::cout << "Error in testing inverse complex sin for type " << typeid(T).name() << std::endl;
 | |
|             std::cout << "   val=             " << val << std::endl;
 | |
|             std::cout << "   asin(val) =      " << inter << std::endl;
 | |
|             std::cout << "   sin(asin(val)) = " << result << std::endl;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    static const T interval2 = static_cast<T>(3.0L/256.0L);
 | |
|    for(x = -3; x <= 3; x += interval2)
 | |
|    {
 | |
|       for(y = -3; y <= 3; y += interval2)
 | |
|       {
 | |
|          // asinh:
 | |
|          std::complex<T> val(x, y), inter, result;
 | |
|          inter = boost::math::asinh(val);
 | |
|          result = sinh(inter);
 | |
|          if(!check_complex(val, result, 5))
 | |
|          {
 | |
|             std::cout << "Error in testing inverse complex sinh for type " << typeid(T).name() << std::endl;
 | |
|             std::cout << "   val=               " << val << std::endl;
 | |
|             std::cout << "   asinh(val) =       " << inter << std::endl;
 | |
|             std::cout << "   sinh(asinh(val)) = " << result << std::endl;
 | |
|          }
 | |
|          // acosh:
 | |
|          if(!((y == 0) && (x <= 1))) // can't test along the branch cut
 | |
|          {
 | |
|             inter = boost::math::acosh(val);
 | |
|             result = cosh(inter);
 | |
|             if(!check_complex(val, result, 60))
 | |
|             {
 | |
|                std::cout << "Error in testing inverse complex cosh for type " << typeid(T).name() << std::endl;
 | |
|                std::cout << "   val=               " << val << std::endl;
 | |
|                std::cout << "   acosh(val) =       " << inter << std::endl;
 | |
|                std::cout << "   cosh(acosh(val)) = " << result << std::endl;
 | |
|             }
 | |
|          }
 | |
|          //
 | |
|          // There is a problem in testing atan and atanh:
 | |
|          // The inverse functions map a large input range to a much
 | |
|          // smaller output range, so at the extremes too rather different
 | |
|          // inputs may map to the same output value once rounded to N places.
 | |
|          // Consequently tan(atan(z)) can suffer from arbitrarily large errors
 | |
|          // even if individually they each have a small error bound.  On the other
 | |
|          // hand we can't test atan(tan(z)) either because atan is multi-valued, so
 | |
|          // round-tripping in this direction isn't always possible.
 | |
|          // The following heuristic is designed to make the best of a bad job,
 | |
|          // using atan(tan(z)) where possible and tan(atan(z)) when it's not.
 | |
|          //
 | |
|          static const int tanh_error = 20;
 | |
|          if((0 != x) && (0 != y) && ((std::fabs(y) < 1) || (std::fabs(x) < 1)))
 | |
|          {
 | |
|             // atanh:
 | |
|             val = boost::math::atanh(val);
 | |
|             inter = tanh(val);
 | |
|             result = boost::math::atanh(inter);
 | |
|             if(!check_complex(val, result, tanh_error))
 | |
|             {
 | |
|                std::cout << "Error in testing inverse complex tanh for type " << typeid(T).name() << std::endl;
 | |
|                std::cout << "   val=               " << val << std::endl;
 | |
|                std::cout << "   tanh(val) =        " << inter << std::endl;
 | |
|                std::cout << "   atanh(tanh(val)) = " << result << std::endl;
 | |
|             }
 | |
|             // atan:
 | |
|             if(!((x == 0) && (std::fabs(y) == 1))) // we can't test infinities here
 | |
|             {
 | |
|                val = std::complex<T>(x, y);
 | |
|                val = boost::math::atan(val);
 | |
|                inter = tan(val);
 | |
|                result = boost::math::atan(inter);
 | |
|                if(!check_complex(val, result, tanh_error))
 | |
|                {
 | |
|                   std::cout << "Error in testing inverse complex tan for type " << typeid(T).name() << std::endl;
 | |
|                   std::cout << "   val=               " << val << std::endl;
 | |
|                   std::cout << "   tan(val) =         " << inter << std::endl;
 | |
|                   std::cout << "   atan(tan(val)) =   " << result << std::endl;
 | |
|                }
 | |
|             }
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             // atanh:
 | |
|             inter = boost::math::atanh(val);
 | |
|             result = tanh(inter);
 | |
|             if(!check_complex(val, result, tanh_error))
 | |
|             {
 | |
|                std::cout << "Error in testing inverse complex atanh for type " << typeid(T).name() << std::endl;
 | |
|                std::cout << "   val=                 " << val << std::endl;
 | |
|                std::cout << "   atanh(val) =         " << inter << std::endl;
 | |
|                std::cout << "   tanh(atanh(val)) =   " << result << std::endl;
 | |
|             }
 | |
|             // atan:
 | |
|             if(!((x == 0) && (std::fabs(y) == 1))) // we can't test infinities here
 | |
|             {
 | |
|                inter = boost::math::atan(val);
 | |
|                result = tan(inter);
 | |
|                if(!check_complex(val, result, tanh_error))
 | |
|                {
 | |
|                   std::cout << "Error in testing inverse complex atan for type " << typeid(T).name() << std::endl;
 | |
|                   std::cout << "   val=                 " << val << std::endl;
 | |
|                   std::cout << "   atan(val) =          " << inter << std::endl;
 | |
|                   std::cout << "   tan(atan(val)) =     " << result << std::endl;
 | |
|                }
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| //
 | |
| // check_spots:
 | |
| // Various spot values, mostly the C99 special cases (infinites and NAN's).
 | |
| // TODO: add spot checks for the Wolfram spot values.
 | |
| //
 | |
| template <class T>
 | |
| void check_spots(const T&)
 | |
| {
 | |
|    typedef std::complex<T> ct;
 | |
|    ct result;
 | |
|    static const T two = 2.0;
 | |
|    T eps = std::pow(two, T(1-std::numeric_limits<T>::digits)); // numeric_limits<>::epsilon way too small to be useful on Darwin.
 | |
|    static const T zero = 0;
 | |
|    static const T mzero = -zero;
 | |
|    static const T one = 1;
 | |
|    static const T pi = boost::math::constants::pi<T>();
 | |
|    static const T half_pi = boost::math::constants::half_pi<T>();
 | |
|    static const T quarter_pi = half_pi / 2;
 | |
|    static const T three_quarter_pi = boost::math::constants::three_quarters_pi<T>();
 | |
|    T infinity = std::numeric_limits<T>::infinity();
 | |
|    bool test_infinity = std::numeric_limits<T>::has_infinity;
 | |
|    T nan = 0;
 | |
|    bool test_nan = false;
 | |
| #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
 | |
|    // numeric_limits reports that a quiet NaN is present
 | |
|    // but an attempt to access it will terminate the program!!!!
 | |
|    if(std::numeric_limits<T>::has_quiet_NaN)
 | |
|       nan = std::numeric_limits<T>::quiet_NaN();
 | |
|    if((boost::math::isnan)(nan))
 | |
|       test_nan = true;
 | |
| #endif
 | |
| #if defined(__DECCXX) && !defined(_IEEE_FP)
 | |
|    // Tru64 cxx traps infinities unless the -ieee option is used:
 | |
|    test_infinity = false;
 | |
| #endif
 | |
| 
 | |
|    //
 | |
|    // C99 spot tests for acos:
 | |
|    //
 | |
|    result = boost::math::acos(ct(zero));
 | |
|    check_complex(ct(half_pi), result, 2);
 | |
|    
 | |
|    result = boost::math::acos(ct(mzero));
 | |
|    check_complex(ct(half_pi), result, 2);
 | |
|    
 | |
|    result = boost::math::acos(ct(zero, mzero));
 | |
|    check_complex(ct(half_pi), result, 2);
 | |
|    
 | |
|    result = boost::math::acos(ct(mzero, mzero));
 | |
|    check_complex(ct(half_pi), result, 2);
 | |
|    
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::acos(ct(zero,nan));
 | |
|       BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    
 | |
|       result = boost::math::acos(ct(mzero,nan));
 | |
|       BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::acos(ct(zero, infinity));
 | |
|       BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == -infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(zero, -infinity));
 | |
|       BOOST_CHECK_CLOSE(result.real(), half_pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == infinity);
 | |
|    }
 | |
| 
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::acos(ct(one, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::acos(ct(-infinity, one));
 | |
|       BOOST_CHECK_CLOSE(result.real(), pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == -infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(infinity, one));
 | |
|       BOOST_CHECK(result.real() == 0);
 | |
|       BOOST_CHECK(result.imag() == -infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(-infinity, -one));
 | |
|       BOOST_CHECK_CLOSE(result.real(), pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(infinity, -one));
 | |
|       BOOST_CHECK(result.real() == 0);
 | |
|       BOOST_CHECK(result.imag() == infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(-infinity, infinity));
 | |
|       BOOST_CHECK_CLOSE(result.real(), three_quarter_pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == -infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(infinity, infinity));
 | |
|       BOOST_CHECK_CLOSE(result.real(), quarter_pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == -infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(-infinity, -infinity));
 | |
|       BOOST_CHECK_CLOSE(result.real(), three_quarter_pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(infinity, -infinity));
 | |
|       BOOST_CHECK_CLOSE(result.real(), quarter_pi, eps*200);
 | |
|       BOOST_CHECK(result.imag() == infinity);
 | |
|    }
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::acos(ct(infinity, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK(std::fabs(result.imag()) == infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(-infinity, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK(std::fabs(result.imag()) == infinity);
 | |
| 
 | |
|       result = boost::math::acos(ct(nan, zero));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::acos(ct(nan, -zero));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::acos(ct(nan, one));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::acos(ct(nan, -one));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::acos(ct(nan, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::acos(ct(nan, infinity));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK(result.imag() == -infinity);
 | |
|       
 | |
|       result = boost::math::acos(ct(nan, -infinity));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK(result.imag() == infinity);
 | |
|    }
 | |
|    if(boost::math::signbit(mzero))
 | |
|    {
 | |
|       result = boost::math::acos(ct(-1.25f, zero));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() < 0);
 | |
|       result = boost::math::asin(ct(-1.75f, mzero));
 | |
|       BOOST_CHECK(result.real() < 0);
 | |
|       BOOST_CHECK(result.imag() < 0);
 | |
|       result = boost::math::atan(ct(mzero, -1.75f));
 | |
|       BOOST_CHECK(result.real() < 0);
 | |
|       BOOST_CHECK(result.imag() < 0);
 | |
| 
 | |
|       result = boost::math::acos(ct(zero, zero));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       BOOST_CHECK((boost::math::signbit)(result.imag()));
 | |
|       result = boost::math::acos(ct(zero, mzero));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       BOOST_CHECK(0 == (boost::math::signbit)(result.imag()));
 | |
|       result = boost::math::acos(ct(mzero, zero));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       BOOST_CHECK((boost::math::signbit)(result.imag()));
 | |
|       result = boost::math::acos(ct(mzero, mzero));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       BOOST_CHECK(0 == (boost::math::signbit)(result.imag()));
 | |
|    }
 | |
| 
 | |
|    //
 | |
|    // C99 spot tests for acosh:
 | |
|    //
 | |
|    result = boost::math::acosh(ct(zero, zero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|    result = boost::math::acosh(ct(zero, mzero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|    result = boost::math::acosh(ct(mzero, zero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
|    
 | |
|    result = boost::math::acosh(ct(mzero, mzero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
|    
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::acosh(ct(one, infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::acosh(ct(one, -infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
|    }
 | |
| 
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::acosh(ct(one, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::acosh(ct(-infinity, one));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), pi, eps*200);
 | |
|       
 | |
|       result = boost::math::acosh(ct(infinity, one));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       
 | |
|       result = boost::math::acosh(ct(-infinity, -one));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -pi, eps*200);
 | |
|       
 | |
|       result = boost::math::acosh(ct(infinity, -one));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       
 | |
|       result = boost::math::acosh(ct(-infinity, infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), three_quarter_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::acosh(ct(infinity, infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), quarter_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::acosh(ct(-infinity, -infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -three_quarter_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::acosh(ct(infinity, -infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -quarter_pi, eps*200);
 | |
|    }
 | |
|    
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::acosh(ct(infinity, nan));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|       
 | |
|       result = boost::math::acosh(ct(-infinity, nan));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|       
 | |
|       result = boost::math::acosh(ct(nan, one));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|       
 | |
|       result = boost::math::acosh(ct(nan, infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|       
 | |
|       result = boost::math::acosh(ct(nan, -one));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|       
 | |
|       result = boost::math::acosh(ct(nan, -infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|       
 | |
|       result = boost::math::acosh(ct(nan, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
|    if(boost::math::signbit(mzero))
 | |
|    {
 | |
|       result = boost::math::acosh(ct(-2.5f, zero));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() > 0);
 | |
|    }
 | |
|    //
 | |
|    // C99 spot checks for asinh:
 | |
|    //
 | |
|    result = boost::math::asinh(ct(zero, zero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK(result.imag() == 0);
 | |
| 
 | |
|    result = boost::math::asinh(ct(mzero, zero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK(result.imag() == 0);
 | |
| 
 | |
|    result = boost::math::asinh(ct(zero, mzero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK(result.imag() == 0);
 | |
| 
 | |
|    result = boost::math::asinh(ct(mzero, mzero));
 | |
|    BOOST_CHECK(result.real() == 0);
 | |
|    BOOST_CHECK(result.imag() == 0);
 | |
| 
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::asinh(ct(one, infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::asinh(ct(one, -infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::asinh(ct(-one, -infinity));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::asinh(ct(-one, infinity));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
|    }
 | |
| 
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::asinh(ct(one, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(-one, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(zero, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
| 
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::asinh(ct(infinity, one));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       
 | |
|       result = boost::math::asinh(ct(infinity, -one));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       
 | |
|       result = boost::math::asinh(ct(-infinity, -one));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       
 | |
|       result = boost::math::asinh(ct(-infinity, one));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
|       
 | |
|       result = boost::math::asinh(ct(infinity, infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), quarter_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::asinh(ct(infinity, -infinity));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -quarter_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::asinh(ct(-infinity, -infinity));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -quarter_pi, eps*200);
 | |
|       
 | |
|       result = boost::math::asinh(ct(-infinity, infinity));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), quarter_pi, eps*200);
 | |
|    }
 | |
| 
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::asinh(ct(infinity, nan));
 | |
|       BOOST_CHECK(result.real() == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(-infinity, nan));
 | |
|       BOOST_CHECK(result.real() == -infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan, zero));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan,  mzero));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK(result.imag() == 0);
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan, one));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan,  -one));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan,  nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan, infinity));
 | |
|       BOOST_CHECK(std::fabs(result.real()) == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::asinh(ct(nan,  -infinity));
 | |
|       BOOST_CHECK(std::fabs(result.real()) == infinity);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
|    if(boost::math::signbit(mzero))
 | |
|    {
 | |
|       result = boost::math::asinh(ct(zero, 1.5f));
 | |
|       BOOST_CHECK(result.real() > 0);
 | |
|       BOOST_CHECK(result.imag() > 0);
 | |
|    }
 | |
|    
 | |
|    //
 | |
|    // C99 special cases for atanh:
 | |
|    //
 | |
|    result = boost::math::atanh(ct(zero, zero));
 | |
|    BOOST_CHECK(result.real() == zero);
 | |
|    BOOST_CHECK(result.imag() == zero);
 | |
| 
 | |
|    result = boost::math::atanh(ct(mzero, zero));
 | |
|    BOOST_CHECK(result.real() == zero);
 | |
|    BOOST_CHECK(result.imag() == zero);
 | |
| 
 | |
|    result = boost::math::atanh(ct(zero, mzero));
 | |
|    BOOST_CHECK(result.real() == zero);
 | |
|    BOOST_CHECK(result.imag() == zero);
 | |
| 
 | |
|    result = boost::math::atanh(ct(mzero, mzero));
 | |
|    BOOST_CHECK(result.real() == zero);
 | |
|    BOOST_CHECK(result.imag() == zero);
 | |
| 
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::atanh(ct(zero, nan));
 | |
|       BOOST_CHECK(result.real() == zero);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::atanh(ct(-zero, nan));
 | |
|       BOOST_CHECK(result.real() == zero);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
| 
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::atanh(ct(one, zero));
 | |
|       BOOST_CHECK_EQUAL(result.real(), infinity);
 | |
|       BOOST_CHECK_EQUAL(result.imag(), zero);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-one, zero));
 | |
|       BOOST_CHECK_EQUAL(result.real(), -infinity);
 | |
|       BOOST_CHECK_EQUAL(result.imag(), zero);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-one, -zero));
 | |
|       BOOST_CHECK_EQUAL(result.real(), -infinity);
 | |
|       BOOST_CHECK_EQUAL(result.imag(), zero);
 | |
| 
 | |
|       result = boost::math::atanh(ct(one, -zero));
 | |
|       BOOST_CHECK_EQUAL(result.real(), infinity);
 | |
|       BOOST_CHECK_EQUAL(result.imag(), zero);
 | |
| 
 | |
|       result = boost::math::atanh(ct(pi, infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(pi, -infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-pi, -infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-pi, infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
|    }
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::atanh(ct(pi, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::atanh(ct(-pi, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
|    }
 | |
| 
 | |
|    if(test_infinity)
 | |
|    {
 | |
|       result = boost::math::atanh(ct(infinity, pi));
 | |
|       BOOST_CHECK(result.real() == zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(infinity, -pi));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-infinity, -pi));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-infinity, pi));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(infinity, infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(infinity, -infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-infinity, -infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(-infinity, infinity));
 | |
|       BOOST_CHECK_EQUAL(result.real(), zero);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
|    }
 | |
| 
 | |
|    if(test_nan)
 | |
|    {
 | |
|       result = boost::math::atanh(ct(infinity, nan));
 | |
|       BOOST_CHECK(result.real() == 0);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::atanh(ct(-infinity, nan));
 | |
|       BOOST_CHECK(result.real() == 0);
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::atanh(ct(nan, pi));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::atanh(ct(nan, -pi));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|       result = boost::math::atanh(ct(nan, infinity));
 | |
|       BOOST_CHECK(result.real() == 0);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(nan, -infinity));
 | |
|       BOOST_CHECK(result.real() == 0);
 | |
|       BOOST_CHECK_CLOSE(result.imag(), -half_pi, eps*200);
 | |
| 
 | |
|       result = boost::math::atanh(ct(nan, nan));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.real()));
 | |
|       BOOST_CHECK((boost::math::isnan)(result.imag()));
 | |
| 
 | |
|    }
 | |
|    if(boost::math::signbit(mzero))
 | |
|    {
 | |
|       result = boost::math::atanh(ct(-2.0f, mzero));
 | |
|       BOOST_CHECK(result.real() < 0);
 | |
|       BOOST_CHECK(result.imag() < 0);
 | |
|    }
 | |
| }
 | |
| 
 | |
| //
 | |
| // test_boundaries:
 | |
| // This is an accuracy test, sets the real and imaginary components
 | |
| // of the input argument to various "boundary conditions" that exist
 | |
| // inside the implementation.  Then computes the result at double precision
 | |
| // and again at float precision.  The double precision result will be
 | |
| // computed using the "regular" code, where as the float precision versions
 | |
| // will calculate the result using the "exceptional value" handlers, so
 | |
| // we end up comparing the values calculated by two different methods.
 | |
| //
 | |
| const float boundaries[] = {
 | |
|    0,
 | |
|    1,
 | |
|    2,
 | |
|    (std::numeric_limits<float>::max)(),
 | |
|    (std::numeric_limits<float>::min)(),
 | |
|    std::numeric_limits<float>::epsilon(),
 | |
|    std::sqrt((std::numeric_limits<float>::max)()) / 8,
 | |
|    static_cast<float>(4) * std::sqrt((std::numeric_limits<float>::min)()),
 | |
|    0.6417F,
 | |
|    1.5F,
 | |
|    std::sqrt((std::numeric_limits<float>::max)()) / 2,
 | |
|    std::sqrt((std::numeric_limits<float>::min)()),
 | |
|    1.0F / 0.3F,
 | |
| };
 | |
| 
 | |
| void do_test_boundaries(float x, float y)
 | |
| {
 | |
|    std::complex<float> r1 = boost::math::asin(std::complex<float>(x, y));
 | |
|    std::complex<double> dr = boost::math::asin(std::complex<double>(x, y));
 | |
|    std::complex<float> r2(static_cast<float>(dr.real()), static_cast<float>(dr.imag()));
 | |
|    check_complex(r2, r1, 5);
 | |
|    r1 = boost::math::acos(std::complex<float>(x, y));
 | |
|    dr = boost::math::acos(std::complex<double>(x, y));
 | |
|    r2 = std::complex<float>(std::complex<double>(dr.real(), dr.imag()));
 | |
|    check_complex(r2, r1, 5);
 | |
|    r1 = boost::math::atanh(std::complex<float>(x, y));
 | |
|    dr = boost::math::atanh(std::complex<double>(x, y));
 | |
|    r2 = std::complex<float>(std::complex<double>(dr.real(), dr.imag()));
 | |
|    check_complex(r2, r1, 5);
 | |
| }
 | |
| 
 | |
| void test_boundaries(float x, float y)
 | |
| {
 | |
|    do_test_boundaries(x, y);
 | |
|    do_test_boundaries(-x, y); 
 | |
|    do_test_boundaries(-x, -y);
 | |
|    do_test_boundaries(x, -y);
 | |
| }
 | |
| 
 | |
| void test_boundaries(float x)
 | |
| {
 | |
|    for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i)
 | |
|    {
 | |
|       test_boundaries(x, boundaries[i]);
 | |
|       test_boundaries(x, boundaries[i] + std::numeric_limits<float>::epsilon()*boundaries[i]);
 | |
|       test_boundaries(x, boundaries[i] - std::numeric_limits<float>::epsilon()*boundaries[i]);
 | |
|    }
 | |
| }
 | |
| 
 | |
| void test_boundaries()
 | |
| {
 | |
|    for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i)
 | |
|    {
 | |
|       test_boundaries(boundaries[i]);
 | |
|       test_boundaries(boundaries[i] + std::numeric_limits<float>::epsilon()*boundaries[i]);
 | |
|       test_boundaries(boundaries[i] - std::numeric_limits<float>::epsilon()*boundaries[i]);//here
 | |
|    }
 | |
| }
 | |
| 
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE( test_main )
 | |
| {
 | |
|    std::cout << "Running complex trig sanity checks for type float." << std::endl;
 | |
|    test_inverse_trig(float(0));
 | |
|    std::cout << "Running complex trig sanity checks for type double." << std::endl;
 | |
|    test_inverse_trig(double(0));
 | |
|    //test_inverse_trig((long double)(0));
 | |
| 
 | |
|    std::cout << "Running complex trig spot checks for type float." << std::endl;
 | |
|    check_spots(float(0));
 | |
|    std::cout << "Running complex trig spot checks for type double." << std::endl;
 | |
|    check_spots(double(0));
 | |
| #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | |
|    std::cout << "Running complex trig spot checks for type long double." << std::endl;
 | |
|    check_spots((long double)(0));
 | |
| #endif
 | |
| 
 | |
|    std::cout << "Running complex trig boundary and accuracy tests." << std::endl;
 | |
|    test_boundaries();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |