mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			803 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			803 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// test_geometric.cpp
 | 
						|
 | 
						|
// Copyright Paul A. Bristow 2010.
 | 
						|
// Copyright John Maddock 2010.
 | 
						|
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
// Tests for Geometric Distribution.
 | 
						|
 | 
						|
// Note that these defines must be placed BEFORE #includes.
 | 
						|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | 
						|
// because several tests overflow & underflow by design.
 | 
						|
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#  pragma warning(disable: 4127) // conditional expression is constant.
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
 | 
						|
#  define TEST_FLOAT
 | 
						|
#  define TEST_DOUBLE
 | 
						|
#  define TEST_LDOUBLE
 | 
						|
#  define TEST_REAL_CONCEPT
 | 
						|
#endif
 | 
						|
 | 
						|
#include <boost/math/tools/test.hpp>
 | 
						|
#include <boost/math/concepts/real_concept.hpp> // for real_concept
 | 
						|
using ::boost::math::concepts::real_concept;
 | 
						|
 | 
						|
#include <boost/math/distributions/geometric.hpp> // for geometric_distribution
 | 
						|
using boost::math::geometric_distribution;
 | 
						|
using boost::math::geometric; // using typedef for geometric_distribution<double>
 | 
						|
 | 
						|
#include <boost/math/distributions/negative_binomial.hpp> // for some comparisons.
 | 
						|
 | 
						|
#define BOOST_TEST_MAIN
 | 
						|
#include <boost/test/unit_test.hpp> // for test_main
 | 
						|
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
 | 
						|
#include "test_out_of_range.hpp"
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
using std::cout;
 | 
						|
using std::endl;
 | 
						|
using std::setprecision;
 | 
						|
using std::showpoint;
 | 
						|
#include <limits>
 | 
						|
using std::numeric_limits;
 | 
						|
 | 
						|
template <class RealType>
 | 
						|
void test_spot( // Test a single spot value against 'known good' values.
 | 
						|
               RealType k,    // Number of failures.
 | 
						|
               RealType p,    // Probability of success_fraction.
 | 
						|
               RealType P,    // CDF probability.
 | 
						|
               RealType Q,    // Complement of CDF.
 | 
						|
               RealType tol)  // Test tolerance.
 | 
						|
{
 | 
						|
   boost::math::geometric_distribution<RealType> g(p);
 | 
						|
   BOOST_CHECK_EQUAL(p, g.success_fraction());
 | 
						|
   BOOST_CHECK_CLOSE_FRACTION(cdf(g, k), P, tol);
 | 
						|
 | 
						|
  if((P < 0.99) && (Q < 0.99))
 | 
						|
  {
 | 
						|
    // We can only check this if P is not too close to 1,
 | 
						|
    // so that we can guarantee that Q is free of error:
 | 
						|
    //
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
      cdf(complement(g, k)), Q, tol);
 | 
						|
    if(k != 0)
 | 
						|
    {
 | 
						|
      BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
        quantile(g, P), k, tol);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // Just check quantile is very small:
 | 
						|
      if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
 | 
						|
        && (boost::is_floating_point<RealType>::value))
 | 
						|
      {
 | 
						|
        // Limit where this is checked: if exponent range is very large we may
 | 
						|
        // run out of iterations in our root finding algorithm.
 | 
						|
        BOOST_CHECK(quantile(g, P) < boost::math::tools::epsilon<RealType>() * 10);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if(k != 0)
 | 
						|
    {
 | 
						|
      BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
        quantile(complement(g, Q)), k, tol);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // Just check quantile is very small:
 | 
						|
      if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
 | 
						|
        && (boost::is_floating_point<RealType>::value))
 | 
						|
      {
 | 
						|
        // Limit where this is checked: if exponent range is very large we may
 | 
						|
        // run out of iterations in our root finding algorithm.
 | 
						|
        BOOST_CHECK(quantile(complement(g, Q)) < boost::math::tools::epsilon<RealType>() * 10);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } //   if((P < 0.99) && (Q < 0.99))
 | 
						|
 | 
						|
    // Parameter estimation test:  estimate success ratio:
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
      geometric_distribution<RealType>::find_lower_bound_on_p(
 | 
						|
      1+k, P),
 | 
						|
      p, 0.02); // Wide tolerance needed for some tests.
 | 
						|
   // Note we bump up the sample size here, purely for the sake of the test,
 | 
						|
    // internally the function has to adjust the sample size so that we get
 | 
						|
    // the right upper bound, our test undoes this, so we can verify the result.
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
      geometric_distribution<RealType>::find_upper_bound_on_p(
 | 
						|
      1+k+1, Q),
 | 
						|
      p, 0.02);
 | 
						|
 | 
						|
    if(Q < P)
 | 
						|
    {
 | 
						|
       //
 | 
						|
       // We check two things here, that the upper and lower bounds
 | 
						|
       // are the right way around, and that they do actually bracket
 | 
						|
       // the naive estimate of p = successes / (sample size)
 | 
						|
       //
 | 
						|
      BOOST_CHECK(
 | 
						|
        geometric_distribution<RealType>::find_lower_bound_on_p(
 | 
						|
        1+k, Q)
 | 
						|
        <=
 | 
						|
        geometric_distribution<RealType>::find_upper_bound_on_p(
 | 
						|
        1+k, Q)
 | 
						|
        );
 | 
						|
      BOOST_CHECK(
 | 
						|
        geometric_distribution<RealType>::find_lower_bound_on_p(
 | 
						|
        1+k, Q)
 | 
						|
        <=
 | 
						|
        1 / (1+k)
 | 
						|
        );
 | 
						|
      BOOST_CHECK(
 | 
						|
        1 / (1+k)
 | 
						|
        <=
 | 
						|
        geometric_distribution<RealType>::find_upper_bound_on_p(
 | 
						|
        1+k, Q)
 | 
						|
        );
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
       // As above but when P is small.
 | 
						|
      BOOST_CHECK(
 | 
						|
        geometric_distribution<RealType>::find_lower_bound_on_p(
 | 
						|
        1+k, P)
 | 
						|
        <=
 | 
						|
        geometric_distribution<RealType>::find_upper_bound_on_p(
 | 
						|
        1+k, P)
 | 
						|
        );
 | 
						|
      BOOST_CHECK(
 | 
						|
        geometric_distribution<RealType>::find_lower_bound_on_p(
 | 
						|
        1+k,  P)
 | 
						|
        <=
 | 
						|
        1 / (1+k)
 | 
						|
        );
 | 
						|
      BOOST_CHECK(
 | 
						|
        1 / (1+k)
 | 
						|
        <=
 | 
						|
        geometric_distribution<RealType>::find_upper_bound_on_p(
 | 
						|
        1+k, P)
 | 
						|
        );
 | 
						|
    }
 | 
						|
 | 
						|
    // Estimate sample size:
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
      geometric_distribution<RealType>::find_minimum_number_of_trials(
 | 
						|
      k, p, P),
 | 
						|
      1+k, 0.02); // Can differ 50 to 51 for small p
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
      geometric_distribution<RealType>::find_maximum_number_of_trials(
 | 
						|
         k, p, Q),
 | 
						|
      1+k, 0.02);
 | 
						|
 | 
						|
} // test_spot
 | 
						|
 | 
						|
template <class RealType> // Any floating-point type RealType.
 | 
						|
void test_spots(RealType)
 | 
						|
{
 | 
						|
  // Basic sanity checks.
 | 
						|
  // Most test data is to double precision (17 decimal digits) only,
 | 
						|
 | 
						|
  cout << "Floating point Type is " << typeid(RealType).name() << endl;
 | 
						|
 | 
						|
  // so set tolerance to 1000 eps expressed as a fraction,
 | 
						|
  // or 1000 eps of type double expressed as a fraction,
 | 
						|
  // whichever is the larger.
 | 
						|
 | 
						|
  RealType tolerance = (std::max)
 | 
						|
    (boost::math::tools::epsilon<RealType>(),
 | 
						|
    static_cast<RealType>(std::numeric_limits<double>::epsilon()));
 | 
						|
  tolerance *= 10; // 10 eps
 | 
						|
 | 
						|
  cout << "Tolerance = " << tolerance << "." << endl;
 | 
						|
 | 
						|
  RealType tol1eps = boost::math::tools::epsilon<RealType>(); // Very tight, suit exact values.
 | 
						|
  //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight,  values.
 | 
						|
  RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
 | 
						|
  cout << "Tolerance 5 eps = " << tol5eps << "." << endl;
 | 
						|
 | 
						|
 | 
						|
  // Sources of spot test values are mainly R.
 | 
						|
 | 
						|
  using boost::math::geometric_distribution;
 | 
						|
  using boost::math::geometric;
 | 
						|
  using boost::math::cdf;
 | 
						|
  using boost::math::pdf;
 | 
						|
  using boost::math::quantile;
 | 
						|
  using boost::math::complement;
 | 
						|
 | 
						|
  BOOST_MATH_STD_USING // for std math functions
 | 
						|
 | 
						|
  // Test geometric using cdf spot values R
 | 
						|
  // These test quantiles and complements as well.
 | 
						|
 | 
						|
  test_spot(  //
 | 
						|
  static_cast<RealType>(2),   // Number of failures, k
 | 
						|
  static_cast<RealType>(0.5), // Probability of success as fraction, p
 | 
						|
  static_cast<RealType>(0.875L), // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(0.125L),  // complement CCDF Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  test_spot( //
 | 
						|
  static_cast<RealType>(0),    // Number of failures, k
 | 
						|
  static_cast<RealType>(0.25), // Probability of success as fraction, p
 | 
						|
  static_cast<RealType>(0.25),   // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(0.75),   // Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  test_spot(
 | 
						|
    // R formatC(pgeom(10,0.25), digits=17) [1] "0.95776486396789551"
 | 
						|
    // formatC(pgeom(10,0.25, FALSE), digits=17) [1] "0.042235136032104499"
 | 
						|
 | 
						|
  static_cast<RealType>(10),  // Number of failures, k
 | 
						|
  static_cast<RealType>(0.25),  // Probability of success, p
 | 
						|
  static_cast<RealType>(0.95776486396789551L),  // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(0.042235136032104499L), // Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  test_spot(  //
 | 
						|
  // > R formatC(pgeom(50,0.25, TRUE), digits=17) [1] "0.99999957525875771"
 | 
						|
  // > R formatC(pgeom(50,0.25, FALSE), digits=17) [1] "4.2474124232020353e-07"
 | 
						|
  static_cast<RealType>(50),     // Number of failures, k
 | 
						|
  static_cast<RealType>(0.25),     // Probability of success, p
 | 
						|
  static_cast<RealType>(0.99999957525875771),  // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(4.2474124232020353e-07),   // Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
  /*
 | 
						|
  // This causes failures in find_upper_bound_on_p p is small branch.
 | 
						|
  test_spot(  // formatC(pgeom(50,0.01, TRUE), digits=17)[1] "0.40104399353383874"
 | 
						|
    // > formatC(pgeom(50,0.01, FALSE), digits=17) [1] "0.59895600646616121"
 | 
						|
  static_cast<RealType>(50), // Number of failures, k
 | 
						|
  static_cast<RealType>(0.01),   // Probability of success, p
 | 
						|
  static_cast<RealType>(0.40104399353383874),   // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(0.59895600646616121),   // Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
  */
 | 
						|
 | 
						|
  test_spot( // > formatC(pgeom(50,0.99, TRUE), digits=17) [1] "                 1"
 | 
						|
    // formatC(pgeom(50,0.99, FALSE), digits=17) [1] "1.0000000000000364e-102"
 | 
						|
  static_cast<RealType>(50),     // Number of failures, k
 | 
						|
  static_cast<RealType>(0.99),    // Probability of success, p
 | 
						|
  static_cast<RealType>(1), // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(1.0000000000000364e-102),   // Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  test_spot(  // > formatC(pgeom(1,0.99, TRUE), digits=17) [1] "0.99990000000000001"
 | 
						|
    // > formatC(pgeom(1,0.99, FALSE), digits=17) [1] "0.00010000000000000009"
 | 
						|
  static_cast<RealType>(1),     // Number of failures, k
 | 
						|
  static_cast<RealType>(0.99),                    // Probability of success, p
 | 
						|
  static_cast<RealType>(0.9999),     // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(0.0001),   // Q = 1 - P
 | 
						|
  tolerance);
 | 
						|
 | 
						|
if(std::numeric_limits<RealType>::is_specialized)
 | 
						|
{ // An extreme value test that is more accurate than using negative binomial.
 | 
						|
  // Since geometric only uses exp and log functions.
 | 
						|
  test_spot(  // > formatC(pgeom(10000, 0.001, TRUE), digits=17) [1] "0.99995487182736897"
 | 
						|
// > formatC(pgeom(10000,0.001, FALSE), digits=17) [1] "4.5128172631071587e-05"
 | 
						|
  static_cast<RealType>(10000L), // Number of failures, k
 | 
						|
  static_cast<RealType>(0.001L),                    // Probability of success, p
 | 
						|
  static_cast<RealType>(0.99995487182736897L),     // Probability of result (CDF), P
 | 
						|
  static_cast<RealType>(4.5128172631071587e-05L),   // Q = 1 - P
 | 
						|
  tolerance); //
 | 
						|
  } // numeric_limit is specialized
 | 
						|
 // End of single spot tests using RealType
 | 
						|
 | 
						|
  // Tests on PDF:
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(0,0.5), digits=17)[1] " 0.5"
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
  static_cast<RealType>(0.0) ),  // Number of failures, k is very small but not integral,
 | 
						|
  static_cast<RealType>(0.5), // nearly success probability.
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(0,0.5), digits=17)[1] "    0.5"
 | 
						|
    //  R treates geom as a discrete distribution.
 | 
						|
    // > formatC(dgeom(1.999999,0.5, FALSE), digits=17) [1] "   0"
 | 
						|
    // Warning message:
 | 
						|
    // In dgeom(1.999999, 0.5, FALSE) : non-integer x = 1.999999
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
  static_cast<RealType>(0.0001L) ),  // Number of failures, k is very small but not integral,
 | 
						|
  static_cast<RealType>(0.4999653438420768L), // nearly success probability.
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] " 0.5"
 | 
						|
    // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | 
						|
    //  R treates geom as a discrete distribution.
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
  static_cast<RealType>(0.0001L) ),  // Number of failures, k is very small but not integral,
 | 
						|
  static_cast<RealType>(0.4999653438420768L), // nearly success probability.
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( // formatC(dgeom(1,0.01), digits=17)[1] "0.0099000000000000008"
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.01L)),
 | 
						|
  static_cast<RealType>(1) ),  // Number of failures, k
 | 
						|
  static_cast<RealType>(0.0099000000000000008), //
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(1,0.99), digits=17)[1] "0.0099000000000000043"
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)),
 | 
						|
  static_cast<RealType>(1) ),  // Number of failures, k
 | 
						|
  static_cast<RealType>(0.00990000000000000043L), //
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //> > formatC(dgeom(0,0.99), digits=17)[1] "0.98999999999999999"
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)),
 | 
						|
  static_cast<RealType>(0) ),  // Number of failures, k
 | 
						|
  static_cast<RealType>(0.98999999999999999L), //
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  // p  near unity.
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( // > formatC(dgeom(100,0.99), digits=17)[1] "9.9000000000003448e-201"
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)),
 | 
						|
  static_cast<RealType>(100) ),  // Number of failures, k
 | 
						|
  static_cast<RealType>(9.9000000000003448e-201L), //
 | 
						|
  100 * tolerance); // Note difference
 | 
						|
 | 
						|
    // p nearer unity.
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999)),
 | 
						|
  static_cast<RealType>(10) ),  // Number of failures, k
 | 
						|
  // static_cast<double>(9.9989999999889024e-41), // Boost.Math
 | 
						|
  // static_cast<float>(1.00156406e-040)
 | 
						|
  static_cast<RealType>(9.999e-41), // exact from 100 digit calculator.
 | 
						|
  2e3 * tolerance); // Note bigger tolerance needed.
 | 
						|
 | 
						|
  // Moshier Cephes 100 digits calculator says 9.999e-41
 | 
						|
  //0.9999*pow(1-0.9999,10)
 | 
						|
  // 9.9990000000000000000000000000000000000000000000000000000000000000000000E-41
 | 
						|
  // 9.998999999988988e-041
 | 
						|
  // > formatC(dgeom(10, 0.9999), digits=17) [1] "9.9989999999889024e-41"
 | 
						|
  // p *  pow(q, k)         9.9989999999889880e-041
 | 
						|
  // exp(p * k * log1p(-p)) 9.9989999999889024e-041
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // 0.9999999999 * pow(1-0.9999999999,10)=  9.9999999990E-101
 | 
						|
  // > formatC(dgeom(10,0.9999999999), digits=17)  [1] "1.0000008273040127e-100"
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999999999L)),
 | 
						|
  static_cast<RealType>(10) ),  //
 | 
						|
  static_cast<RealType>(9.9999999990E-101L), // 1.0000008273040179e-100
 | 
						|
  1e9 * tolerance); // Note big tolerance needed.
 | 
						|
  // 1.0000008273040179e-100  Boost.Math
 | 
						|
  // 1.0000008273040127e-100  R
 | 
						|
  // 0.9999999990000004e-100  100 digit calculator 'exact'
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.00000000001L)),
 | 
						|
  static_cast<RealType>(10) ),  //
 | 
						|
  static_cast<RealType>(9.999999999e-12L), // get 9.9999999989999994e-012
 | 
						|
  1 * tolerance); // Note small tolerance needed.
 | 
						|
 | 
						|
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION( //
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.00000000001L)),
 | 
						|
  static_cast<RealType>(1000) ),  //
 | 
						|
  static_cast<RealType>(9.9999999e-12L), // get 9.9999998999999913e-012
 | 
						|
  tolerance); // Note small tolerance needed.
 | 
						|
 | 
						|
 | 
						|
  ///////////////////////////////////////////////////
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //
 | 
						|
    // > formatC(dgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | 
						|
    //  R treates geom as a discrete distribution.
 | 
						|
    // But Boost.Math is continuous, so if you want R behaviour,
 | 
						|
    // make number of failures, k into an integer with the floor function.
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
  static_cast<RealType>(floor(0.0001L)) ),  // Number of failures, k is very small but MADE integral,
 | 
						|
  static_cast<RealType>(0.5), // nearly success probability.
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  // R switches over at about 1e7 from k = 0, returning 0.5,  to k = 1, returning 0.25.
 | 
						|
  // Boost.Math does not do this, even for 0.9999999999999999
 | 
						|
  // > formatC(pgeom(0.999999,0.5, FALSE), digits=17) [1] "               0.5"
 | 
						|
  // > formatC(pgeom(0.9999999,0.5, FALSE), digits=17) [1] "              0.25"
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] "               0.5"
 | 
						|
    // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | 
						|
    //  R treates geom as a discrete distribution.
 | 
						|
    // But Boost.Math is continuous, so if you want R behaviour,
 | 
						|
    // make number of failures, k into an integer with the floor function.
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
  static_cast<RealType>(floor(0.9999999999999999L)) ),  // Number of failures, k is very small but MADE integral,
 | 
						|
  static_cast<RealType>(0.5), // nearly success probability.
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] "               0.5"
 | 
						|
    // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | 
						|
    //  R treates geom as a discrete distribution.
 | 
						|
    // But Boost.Math is continuous, so if you want R behaviour,
 | 
						|
    // make number of failures, k into an integer with the floor function.
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
  static_cast<RealType>(floor(1. - tolerance)) ),
 | 
						|
  // Number of failures, k is very small but MADE integral,
 | 
						|
  // Need to use tolerance here,
 | 
						|
  // as epsilon is ill-defined for Real concept:
 | 
						|
  // numeric_limits<RealType>::epsilon()  0
 | 
						|
  static_cast<RealType>(0.5), // nearly success probability.
 | 
						|
  tolerance * 10);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.0001L)),
 | 
						|
  static_cast<RealType>(2)),  // k = 2.
 | 
						|
  static_cast<RealType>(9.99800010e-5L), // 'exact '
 | 
						|
  tolerance);
 | 
						|
 | 
						|
  //> formatC(dgeom(2, 0.9999), digits=17) [1] "9.9989999999977806e-09"
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)),
 | 
						|
  static_cast<RealType>(2)),  // k = 0
 | 
						|
  static_cast<RealType>(9.999e-9L), // 'exact'
 | 
						|
  1000*tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)),
 | 
						|
  static_cast<RealType>(3)),  // k = 3
 | 
						|
  static_cast<RealType>(9.999e-13L), // get
 | 
						|
  1000*tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)),
 | 
						|
  static_cast<RealType>(5)),  // k = 5
 | 
						|
  static_cast<RealType>(9.999e-21L), //  9.9989999999944947e-021
 | 
						|
  1000*tolerance);
 | 
						|
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  pdf(geometric_distribution<RealType>( static_cast<RealType>(0.0001L)),
 | 
						|
  static_cast<RealType>(3)),  // k = 0.
 | 
						|
  static_cast<RealType>(9.99700029999e-5L), //
 | 
						|
  tolerance);
 | 
						|
   // Tests on cdf:
 | 
						|
  // MathCAD pgeom k, r, p) == failures, successes, probability.
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(cdf(
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.5)), // prob 0.5
 | 
						|
    static_cast<RealType>(0) ), // k = 0
 | 
						|
    static_cast<RealType>(0.5), // probability =p
 | 
						|
    tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(cdf(complement(
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.5)), //
 | 
						|
    static_cast<RealType>(0) )), // k = 0
 | 
						|
    static_cast<RealType>(0.5), // probability =
 | 
						|
    tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(cdf(
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.25)), // prob 0.5
 | 
						|
    static_cast<RealType>(1) ), // k = 0
 | 
						|
    static_cast<RealType>(0.4375L), // probability =p
 | 
						|
    tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(cdf(complement(
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.25)), //
 | 
						|
    static_cast<RealType>(1) )), // k = 0
 | 
						|
    static_cast<RealType>(1-0.4375L), // probability =
 | 
						|
    tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(cdf(complement(
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.5)), //
 | 
						|
    static_cast<RealType>(1) )), // k = 0
 | 
						|
    static_cast<RealType>(0.25), // probability = exact 0.25
 | 
						|
    tolerance);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION( //
 | 
						|
    cdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)),
 | 
						|
    static_cast<RealType>(4)),  // k =4.
 | 
						|
    static_cast<RealType>(0.96875L), // exact
 | 
						|
    tolerance);
 | 
						|
 | 
						|
 | 
						|
  // Tests of other functions, mean and other moments ...
 | 
						|
 | 
						|
  geometric_distribution<RealType> dist(static_cast<RealType>(0.25));
 | 
						|
  // mean:
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    mean(dist), static_cast<RealType>((1 - 0.25) /0.25), tol5eps);
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    mode(dist), static_cast<RealType>(0), tol1eps);
 | 
						|
  // variance:
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    variance(dist), static_cast<RealType>((1 - 0.25) / (0.25 * 0.25)), tol5eps);
 | 
						|
 | 
						|
  // std deviation:
 | 
						|
  // sqrt(0.75/0.125)
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    standard_deviation(dist), //
 | 
						|
    static_cast<RealType>(sqrt((1.0L - 0.25L) / (0.25L * 0.25L))), // using 100 digit calc
 | 
						|
    tol5eps);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    skewness(dist), //
 | 
						|
    static_cast<RealType>((2-0.25L) /sqrt(0.75L)),
 | 
						|
    // using calculator
 | 
						|
    tol5eps);
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    kurtosis_excess(dist), //
 | 
						|
    static_cast<RealType>(6 + 0.0625L/0.75L), //
 | 
						|
    tol5eps);
 | 
						|
  // 6.083333333333333  6.166666666666667
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
    kurtosis(dist), // true
 | 
						|
    static_cast<RealType>(9 + 0.0625L/0.75L), //
 | 
						|
    tol5eps);
 | 
						|
  // hazard:
 | 
						|
  RealType x = static_cast<RealType>(0.125);
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  hazard(dist, x)
 | 
						|
  , pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
 | 
						|
  // cumulative hazard:
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
 | 
						|
  // coefficient_of_variation:
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  coefficient_of_variation(dist)
 | 
						|
  , standard_deviation(dist) / mean(dist), tol5eps);
 | 
						|
 | 
						|
  // Special cases for PDF:
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  pdf(
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0)), //
 | 
						|
  static_cast<RealType>(0)),
 | 
						|
  static_cast<RealType>(0) );
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  pdf(
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0)),
 | 
						|
  static_cast<RealType>(0.0001)),
 | 
						|
  static_cast<RealType>(0) );
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  pdf(
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(1)),
 | 
						|
  static_cast<RealType>(0.001)),
 | 
						|
  static_cast<RealType>(0) );
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  pdf(
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(1)),
 | 
						|
  static_cast<RealType>(8)),
 | 
						|
  static_cast<RealType>(0) );
 | 
						|
 | 
						|
  BOOST_CHECK_SMALL(
 | 
						|
  pdf(
 | 
						|
   geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(0))-
 | 
						|
  static_cast<RealType>(0.25),
 | 
						|
  2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
 | 
						|
  // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
 | 
						|
 | 
						|
  // Quantile boundary cases checks:
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  quantile(  // zero P < cdf(0) so should be exactly zero.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(0)),
 | 
						|
  static_cast<RealType>(0));
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  quantile(  // min P < cdf(0) so should be exactly zero.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(boost::math::tools::min_value<RealType>())),
 | 
						|
  static_cast<RealType>(0));
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  quantile(  // Small P < cdf(0) so should be near zero.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(boost::math::tools::epsilon<RealType>())), //
 | 
						|
  static_cast<RealType>(0),
 | 
						|
    tol5eps);
 | 
						|
 | 
						|
  BOOST_CHECK_CLOSE_FRACTION(
 | 
						|
  quantile(  // Small P < cdf(0) so should be exactly zero.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(0.0001)),
 | 
						|
  static_cast<RealType>(0),
 | 
						|
    tolerance);
 | 
						|
 | 
						|
  //BOOST_CHECK(  // Fails with overflow for real_concept
 | 
						|
  //quantile(  // Small P near 1 so k failures should be big.
 | 
						|
  //geometric_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
 | 
						|
  //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
 | 
						|
  //static_cast<RealType>(189.56999032670058)  // 106.462769 for float
 | 
						|
  //);
 | 
						|
 | 
						|
  if(std::numeric_limits<RealType>::has_infinity)
 | 
						|
  { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
 | 
						|
    // Note that infinity is not implemented for real_concept, so these tests
 | 
						|
    // are only done for types, like built-in float, double.. that have infinity.
 | 
						|
    // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
 | 
						|
    // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY ==  throw_on_error would throw here.
 | 
						|
    // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
 | 
						|
    //  so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
 | 
						|
 | 
						|
    BOOST_CHECK(
 | 
						|
    quantile(  // At P == 1 so k failures should be infinite.
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
    static_cast<RealType>(1)) ==
 | 
						|
    //static_cast<RealType>(boost::math::tools::infinity<RealType>())
 | 
						|
    static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
 | 
						|
 | 
						|
    BOOST_CHECK_EQUAL(
 | 
						|
    quantile(  // At 1 == P  so should be infinite.
 | 
						|
    geometric_distribution<RealType>( static_cast<RealType>(0.25)),
 | 
						|
    static_cast<RealType>(1)), //
 | 
						|
    std::numeric_limits<RealType>::infinity() );
 | 
						|
 | 
						|
    BOOST_CHECK_EQUAL(
 | 
						|
    quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
    static_cast<RealType>(0))),
 | 
						|
    std::numeric_limits<RealType>::infinity() );
 | 
						|
   } // test for infinity using std::numeric_limits<>::infinity()
 | 
						|
  else
 | 
						|
  { // real_concept case, so check it throws rather than returning infinity.
 | 
						|
    BOOST_CHECK_EQUAL(
 | 
						|
    quantile(  // At P == 1 so k failures should be infinite.
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
    static_cast<RealType>(1)),
 | 
						|
    boost::math::tools::max_value<RealType>() );
 | 
						|
 | 
						|
    BOOST_CHECK_EQUAL(
 | 
						|
    quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
 | 
						|
    geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
    static_cast<RealType>(0))),
 | 
						|
    boost::math::tools::max_value<RealType>());
 | 
						|
  } // has infinity
 | 
						|
 | 
						|
  BOOST_CHECK( // Should work for built-in and real_concept.
 | 
						|
  quantile(complement(  // Q near to 1 so P nearly 1, so should be large > 300.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(boost::math::tools::min_value<RealType>())))
 | 
						|
   >= static_cast<RealType>(300) );
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  quantile(  //  P ==  0 < cdf(0) so should be zero.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(0)),
 | 
						|
  static_cast<RealType>(0));
 | 
						|
 | 
						|
  // Quantile Complement boundary cases:
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  quantile(complement(  // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
 | 
						|
  geometric_distribution<RealType>( static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(1))),
 | 
						|
  static_cast<RealType>(0)
 | 
						|
  );
 | 
						|
 | 
						|
  BOOST_CHECK_EQUAL(
 | 
						|
  quantile(complement(  // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
 | 
						|
  static_cast<RealType>(0)
 | 
						|
  );
 | 
						|
 | 
						|
  // Check that duff arguments throw domain_error:
 | 
						|
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  pdf( // Negative success_fraction!
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(-0.25)),
 | 
						|
  static_cast<RealType>(0)), std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  pdf( // Success_fraction > 1!
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(1.25)),
 | 
						|
  static_cast<RealType>(0)),
 | 
						|
  std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  pdf( // Negative k argument !
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(-1)),
 | 
						|
  std::domain_error);
 | 
						|
  //BOOST_MATH_CHECK_THROW(
 | 
						|
  //pdf( // check limit on k (failures)
 | 
						|
  //geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  //std::numeric_limits<RealType>infinity()),
 | 
						|
  //std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  cdf(  // Negative k argument !
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | 
						|
  static_cast<RealType>(-1)),
 | 
						|
  std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  cdf( // Negative success_fraction!
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(-0.25)),
 | 
						|
  static_cast<RealType>(0)), std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  cdf( // Success_fraction > 1!
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(1.25)),
 | 
						|
  static_cast<RealType>(0)), std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  quantile(  // Negative success_fraction!
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(-0.25)),
 | 
						|
  static_cast<RealType>(0)), std::domain_error);
 | 
						|
  BOOST_MATH_CHECK_THROW(
 | 
						|
  quantile( // Success_fraction > 1!
 | 
						|
  geometric_distribution<RealType>(static_cast<RealType>(1.25)),
 | 
						|
  static_cast<RealType>(0)), std::domain_error);
 | 
						|
   check_out_of_range<geometric_distribution<RealType> >(0.5);
 | 
						|
  // End of check throwing 'duff' out-of-domain values.
 | 
						|
 | 
						|
  { // Compare geometric and negative binomial functions.
 | 
						|
    using boost::math::negative_binomial_distribution;
 | 
						|
    using boost::math::geometric_distribution;
 | 
						|
 | 
						|
    RealType k = static_cast<RealType>(2.L);
 | 
						|
    RealType alpha = static_cast<RealType>(0.05L);
 | 
						|
    RealType p = static_cast<RealType>(0.5L);
 | 
						|
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION( // Successes parameter in negative binomial is 1 for geometric.
 | 
						|
      geometric_distribution<RealType>::find_lower_bound_on_p(k, alpha),
 | 
						|
      negative_binomial_distribution<RealType>::find_lower_bound_on_p(k, static_cast<RealType>(1), alpha),
 | 
						|
      tolerance);
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION( // Successes parameter in negative binomial is 1 for geometric.
 | 
						|
      geometric_distribution<RealType>::find_upper_bound_on_p(k, alpha),
 | 
						|
      negative_binomial_distribution<RealType>::find_upper_bound_on_p(k, static_cast<RealType>(1), alpha),
 | 
						|
      tolerance);
 | 
						|
    BOOST_CHECK_CLOSE_FRACTION( // Should be identical - successes parameter is not used.
 | 
						|
       geometric_distribution<RealType>::find_maximum_number_of_trials(k, p, alpha),
 | 
						|
      negative_binomial_distribution<RealType>::find_maximum_number_of_trials(k, p, alpha),
 | 
						|
    tolerance);
 | 
						|
  }
 | 
						|
    //geometric::find_upper_bound_on_p(k, alpha);
 | 
						|
   return;
 | 
						|
} // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
 | 
						|
 | 
						|
BOOST_AUTO_TEST_CASE( test_main )
 | 
						|
{
 | 
						|
  // Check that can generate geometric distribution using the two convenience methods:
 | 
						|
   using namespace boost::math;
 | 
						|
   geometric g05d(0.5); // Using typedef - default type is double.
 | 
						|
   geometric_distribution<> g05dd(0.5); // Using default RealType double.
 | 
						|
 | 
						|
  // Basic sanity-check spot values.
 | 
						|
 | 
						|
  // Test some simple double only examples.
 | 
						|
  geometric_distribution<double> mydist(0.25);
 | 
						|
  // success fraction == 0.25 == 25% or 1 in 4 successes.
 | 
						|
  // Note: double values (matching the distribution definition) avoid the need for any casting.
 | 
						|
 | 
						|
  // Check accessor functions return exact values for double at least.
 | 
						|
  BOOST_CHECK_EQUAL(mydist.success_fraction(), static_cast<double>(1./4.));
 | 
						|
 | 
						|
  //cout << numeric_limits<RealType>::epsilon() << endl;
 | 
						|
 | 
						|
  // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | 
						|
#ifdef TEST_FLOAT
 | 
						|
  test_spots(0.0F); // Test float.
 | 
						|
#endif
 | 
						|
#ifdef TEST_DOUBLE
 | 
						|
  test_spots(0.0); // Test double.
 | 
						|
#endif
 | 
						|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | 
						|
#ifdef TEST_LDOUBLE
 | 
						|
  test_spots(0.0L); // Test long double.
 | 
						|
#endif
 | 
						|
  #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
 | 
						|
#ifdef TEST_REAL_CONCEPT
 | 
						|
    test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | 
						|
#endif
 | 
						|
  #endif
 | 
						|
#else
 | 
						|
   std::cout << "<note>The long double tests have been disabled on this platform "
 | 
						|
      "either because the long double overloads of the usual math functions are "
 | 
						|
      "not available at all, or because they are too inaccurate for these tests "
 | 
						|
      "to pass.</note>" << std::endl;
 | 
						|
#endif
 | 
						|
 | 
						|
  
 | 
						|
} // BOOST_AUTO_TEST_CASE( test_main )
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
 | 
						|
 | 
						|
*/
 |