mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 10:00:23 -04:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@8277 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			228 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  ftrsdap.c
 | |
|  
 | |
|  A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
 | |
|  
 | |
|  This decoding scheme is built around Phil Karn's Berlekamp-Massey
 | |
|  errors and erasures decoder. The approach is inspired by a number of
 | |
|  publications, including the stochastic Chase decoder described
 | |
|  in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
 | |
|  IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
 | |
|  "Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
 | |
|  and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
 | |
|  
 | |
|  Steve Franke K9AN and Joe Taylor K1JT
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <unistd.h>
 | |
| #include <time.h>
 | |
| #include <string.h>
 | |
| #include "../ftrsd/rs2.h"
 | |
| 
 | |
| static void *rs;
 | |
| void getpp_(int workdat[], float *pp);
 | |
| 
 | |
| void ftrsdap_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[], 
 | |
| 	     int ap[], int* ntrials0, int correct[], int param[], int ntry[])
 | |
| {
 | |
|   int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
 | |
|   int workdat[63];
 | |
|   int indexes[63];
 | |
|   int era_pos[51];
 | |
|   int i, j, numera, nerr, nn=63;
 | |
|   int ntrials = *ntrials0;
 | |
|   int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768;
 | |
|   int ntotal=0,ntotal_min=32768,ncandidates;
 | |
|   int nera_best=0;
 | |
|   float pp,pp1,pp2;
 | |
|   static unsigned int nseed;
 | |
|   
 | |
| // Power-percentage symbol metrics - composite gnnf/hf 
 | |
|   int perr[8][8] = {
 | |
|     { 4,      9,     11,     13,     14,     14,     15,     15},
 | |
|     { 2,     20,     20,     30,     40,     50,     50,     50},
 | |
|     { 7,     24,     27,     40,     50,     50,     50,     50},
 | |
|     {13,     25,     35,     46,     52,     70,     50,     50},
 | |
|     {17,     30,     42,     54,     55,     64,     71,     70},
 | |
|     {25,     39,     48,     57,     64,     66,     77,     77},
 | |
|     {32,     45,     54,     63,     66,     75,     78,     83},
 | |
|     {51,     58,     57,     66,     72,     77,     82,     86}};
 | |
| 
 | |
|     
 | |
| // Initialize the KA9Q Reed-Solomon encoder/decoder
 | |
|   unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
 | |
|   rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
 | |
| 
 | |
| // Reverse the received symbol vectors for BM decoder
 | |
|   for (i=0; i<63; i++) {
 | |
|     rxdat[i]=mrsym[62-i];
 | |
|     rxprob[i]=mrprob[62-i];
 | |
|     rxdat2[i]=mr2sym[62-i];
 | |
|     rxprob2[i]=mr2prob[62-i];
 | |
|   }
 | |
| 
 | |
| // Set ap symbols and ap mask
 | |
|   for (i=0; i<12; i++) {
 | |
|     if(ap[i]>=0) {
 | |
|       rxdat[11-i]=ap[i];
 | |
|       rxprob2[11-i]=-1;
 | |
|     }
 | |
|   }
 | |
|  
 | |
| // Sort rxprob to find indexes of the least reliable symbols
 | |
|   int k, pass, tmp, nsym=63;
 | |
|   int probs[63];
 | |
|   for (i=0; i<63; i++) {
 | |
|     indexes[i]=i;
 | |
|     probs[i]=rxprob[i];
 | |
|   }
 | |
|   for (pass = 1; pass <= nsym-1; pass++) {
 | |
|     for (k = 0; k < nsym - pass; k++) {
 | |
|       if( probs[k] < probs[k+1] ) {
 | |
|         tmp = probs[k];
 | |
|         probs[k] = probs[k+1];
 | |
|         probs[k+1] = tmp;
 | |
|         tmp = indexes[k];
 | |
|         indexes[k] = indexes[k+1];
 | |
|         indexes[k+1] = tmp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
| // See if we can decode using BM HDD, and calculate the syndrome vector.
 | |
|   memset(era_pos,0,51*sizeof(int));
 | |
|   numera=0;
 | |
|   memcpy(workdat,rxdat,sizeof(rxdat));
 | |
|   nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
 | |
|   if( nerr >= 0 ) {
 | |
|     // Hard-decision decoding succeeded.  Save codeword and some parameters.
 | |
|     nhard=0;
 | |
|     for (i=0; i<63; i++) {
 | |
|       if( workdat[i] != rxdat[i] ) nhard=nhard+1;
 | |
|     }
 | |
|     memcpy(correct,workdat,63*sizeof(int));
 | |
|     param[0]=0;
 | |
|     param[1]=nhard;
 | |
|     param[2]=0;
 | |
|     param[3]=0;
 | |
|     param[4]=0;
 | |
|     param[5]=0;
 | |
|     param[7]=1000*1000;
 | |
|     ntry[0]=0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| /*
 | |
| Hard-decision decoding failed.  Try the FT soft-decision method.
 | |
| Generate random erasure-locator vectors and see if any of them
 | |
| decode. This will generate a list of "candidate" codewords.  The
 | |
| soft distance between each candidate codeword and the received 
 | |
| word is estimated by finding the largest (pp1) and second-largest 
 | |
| (pp2) outputs from a synchronized filter-bank operating on the 
 | |
| symbol spectra, and using these to decide which candidate 
 | |
| codeword is "best".
 | |
| */
 | |
| 
 | |
|   nseed=1;                                 //Seed for random numbers
 | |
|   float ratio;
 | |
|   int thresh, nsum;
 | |
|   int thresh0[63];
 | |
|   ncandidates=0;
 | |
|   nsum=0;
 | |
|   int ii,jj;
 | |
|   for (i=0; i<nn; i++) {
 | |
|     nsum=nsum+rxprob[i];
 | |
|     j = indexes[62-i];
 | |
|     if( rxprob2[j]>=0 ) {
 | |
|       ratio = (float)rxprob2[j]/((float)rxprob[j]+0.01);
 | |
|       ii = 7.999*ratio;
 | |
|       jj = (62-i)/8;
 | |
|       thresh0[i] = 1.3*perr[ii][jj];
 | |
|     } else {
 | |
|       thresh0[i] = 0.0;
 | |
|     }
 | |
| //printf("%d %d %d\n",i,j,rxdat[i]);
 | |
|   }
 | |
| 
 | |
|   if(nsum<=0) return;
 | |
| 
 | |
|   pp1=0.0;
 | |
|   pp2=0.0;
 | |
|   for (k=1; k<=ntrials; k++) {
 | |
|     memset(era_pos,0,51*sizeof(int));
 | |
|     memcpy(workdat,rxdat,sizeof(rxdat));
 | |
| 
 | |
| /* 
 | |
| Mark a subset of the symbols as erasures.
 | |
| Run through the ranked symbols, starting with the worst, i=0.
 | |
| NB: j is the symbol-vector index of the symbol with rank i.
 | |
| */
 | |
|     numera=0;
 | |
|     for (i=0; i<nn; i++) {
 | |
|       j = indexes[62-i];
 | |
|       thresh=thresh0[i];
 | |
|       long int ir;
 | |
| 
 | |
| // Generate a random number ir, 0 <= ir < 100 (see POSIX.1-2001 example).
 | |
|       nseed = nseed * 1103515245 + 12345;
 | |
|       ir = (unsigned)(nseed/65536) % 32768;
 | |
|       ir = (100*ir)/32768;
 | |
| 
 | |
|       if((ir < thresh ) && numera < 51) {
 | |
|         era_pos[numera]=j;
 | |
|         numera=numera+1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     nerr=decode_rs_int(rs,workdat,era_pos,numera,0);        
 | |
|     if( nerr >= 0 ) {
 | |
|       // We have a candidate codeword.  Find its hard and soft distance from
 | |
|       // the received word.  Also find pp1 and pp2 from the full array 
 | |
|       // s3(64,63) of synchronized symbol spectra.
 | |
|       ncandidates=ncandidates+1;
 | |
|       nhard=0;
 | |
|       nsoft=0;
 | |
|       for (i=0; i<63; i++) {
 | |
|         if(workdat[i] != rxdat[i]) {
 | |
|           nhard=nhard+1;
 | |
|           if(workdat[i] != rxdat2[i]) {
 | |
|             nsoft=nsoft+rxprob[i];
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       nsoft=63*nsoft/nsum;
 | |
|       ntotal=nsoft+nhard;
 | |
| 
 | |
|       getpp_(workdat,&pp);
 | |
|       if(pp>pp1) {
 | |
|         pp2=pp1;
 | |
|         pp1=pp;
 | |
|         nsoft_min=nsoft;
 | |
|         nhard_min=nhard;
 | |
|         ntotal_min=ntotal;
 | |
|         memcpy(correct,workdat,63*sizeof(int));
 | |
|         nera_best=numera;
 | |
|         ntry[0]=k;
 | |
|       } else {
 | |
|         if(pp>pp2 && pp!=pp1) pp2=pp;
 | |
|       }
 | |
|       if(nhard_min <= 41 && ntotal_min <= 71) break;
 | |
|     }
 | |
|     if(k == ntrials) ntry[0]=k;
 | |
|   }
 | |
|   
 | |
|   param[0]=ncandidates;
 | |
|   param[1]=nhard_min;
 | |
|   param[2]=nsoft_min;
 | |
|   param[3]=nera_best;
 | |
|   param[4]=1000.0*pp2/pp1;
 | |
|   param[5]=ntotal_min;
 | |
|   param[6]=ntry[0];
 | |
|   param[7]=1000.0*pp2;
 | |
|   param[8]=1000.0*pp1;
 | |
|   if(param[0]==0) param[2]=-1;
 | |
|   return;
 | |
| }
 |