mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			400 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			400 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2006, 2012.
 | |
| // Copyright Paul A. Bristow 2007, 2012.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // test_weibull.cpp
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4127) //  conditional expression is constant.
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp> // Boost.Test
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| 
 | |
| #include <boost/math/distributions/weibull.hpp>
 | |
|     using boost::math::weibull_distribution;
 | |
| #include <boost/math/tools/test.hpp> 
 | |
| #include "test_out_of_range.hpp"
 | |
| 
 | |
| #include <iostream>
 | |
|    using std::cout;
 | |
|    using std::endl;
 | |
|    using std::setprecision;
 | |
| #include <limits>
 | |
|   using std::numeric_limits;
 | |
| 
 | |
| template <class RealType>
 | |
| void check_weibull(RealType shape, RealType scale, RealType x, RealType p, RealType q, RealType tol)
 | |
| {
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::cdf(
 | |
|          weibull_distribution<RealType>(shape, scale),       // distribution.
 | |
|          x),                                            // random variable.
 | |
|          p,                                             // probability.
 | |
|          tol);                                          // %tolerance.
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::cdf(
 | |
|          complement(
 | |
|             weibull_distribution<RealType>(shape, scale),    // distribution.
 | |
|             x)),                                        // random variable.
 | |
|          q,                                             // probability complement.
 | |
|          tol);                                          // %tolerance.
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::quantile(
 | |
|          weibull_distribution<RealType>(shape, scale),       // distribution.
 | |
|          p),                                            // probability.
 | |
|          x,                                             // random variable.
 | |
|          tol);                                          // %tolerance.
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::quantile(
 | |
|          complement(
 | |
|             weibull_distribution<RealType>(shape, scale),    // distribution.
 | |
|             q)),                                        // probability complement.
 | |
|          x,                                             // random variable.
 | |
|          tol);                                          // %tolerance.
 | |
| }
 | |
| 
 | |
| template <class RealType>
 | |
| void test_spots(RealType)
 | |
| {
 | |
|    // Basic sanity checks
 | |
|    //
 | |
|    // These test values were generated for the normal distribution
 | |
|    // using the online calculator at 
 | |
|    // http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
 | |
|    //
 | |
|    // Tolerance is just over 5 decimal digits expressed as a persentage:
 | |
|    // that's the limit of the test data.
 | |
|    RealType tolerance = 2e-5f * 100;  
 | |
|    cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;
 | |
| 
 | |
|    using std::exp;
 | |
| 
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.25),     // shape
 | |
|       static_cast<RealType>(0.5),     // scale
 | |
|       static_cast<RealType>(0.1),     // x
 | |
|       static_cast<RealType>(0.487646),   // p
 | |
|       static_cast<RealType>(1-0.487646),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.25),     // shape
 | |
|       static_cast<RealType>(0.5),     // scale
 | |
|       static_cast<RealType>(0.5),     // x
 | |
|       static_cast<RealType>(1-0.367879),   // p
 | |
|       static_cast<RealType>(0.367879),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.25),     // shape
 | |
|       static_cast<RealType>(0.5),     // scale
 | |
|       static_cast<RealType>(1),     // x
 | |
|       static_cast<RealType>(1-0.304463),   // p
 | |
|       static_cast<RealType>(0.304463),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.25),     // shape
 | |
|       static_cast<RealType>(0.5),     // scale
 | |
|       static_cast<RealType>(2),     // x
 | |
|       static_cast<RealType>(1-0.243117),   // p
 | |
|       static_cast<RealType>(0.243117),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.25),     // shape
 | |
|       static_cast<RealType>(0.5),     // scale
 | |
|       static_cast<RealType>(5),     // x
 | |
|       static_cast<RealType>(1-0.168929),   // p
 | |
|       static_cast<RealType>(0.168929),   // q
 | |
|       tolerance);
 | |
| 
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.5),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(0.1),     // x
 | |
|       static_cast<RealType>(0.200371),   // p
 | |
|       static_cast<RealType>(1-0.200371),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.5),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(0.5),     // x
 | |
|       static_cast<RealType>(0.393469),   // p
 | |
|       static_cast<RealType>(1-0.393469),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.5),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(1),     // x
 | |
|       static_cast<RealType>(1-0.493069),   // p
 | |
|       static_cast<RealType>(0.493069),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.5),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(2),     // x
 | |
|       static_cast<RealType>(1-0.367879),   // p
 | |
|       static_cast<RealType>(0.367879),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(0.5),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(5),     // x
 | |
|       static_cast<RealType>(1-0.205741),   // p
 | |
|       static_cast<RealType>(0.205741),   // q
 | |
|       tolerance);
 | |
| 
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(2),     // shape
 | |
|       static_cast<RealType>(0.25),     // scale
 | |
|       static_cast<RealType>(0.1),     // x
 | |
|       static_cast<RealType>(0.147856),   // p
 | |
|       static_cast<RealType>(1-0.147856),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(2),     // shape
 | |
|       static_cast<RealType>(0.25),     // scale
 | |
|       static_cast<RealType>(0.5),     // x
 | |
|       static_cast<RealType>(1-0.018316),   // p
 | |
|       static_cast<RealType>(0.018316),   // q
 | |
|       tolerance);
 | |
| 
 | |
|    /*
 | |
|    This test value came from 
 | |
|    http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
 | |
|    but appears to be grossly incorrect: certainly it does not agree with the values
 | |
|    I get from pushing numbers into a calculator (0.0001249921878255106610615995196123).   
 | |
|    Strangely other test values generated for the same shape and scale parameters do look OK.
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(3),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(0.1),     // x
 | |
|       static_cast<RealType>(1.25E-40),   // p
 | |
|       static_cast<RealType>(1-1.25E-40),   // q
 | |
|       tolerance);
 | |
|       */
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(3),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(0.5),     // x
 | |
|       static_cast<RealType>(0.015504),   // p
 | |
|       static_cast<RealType>(1-0.015504),   // q
 | |
|       tolerance * 10); // few digits in test value
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(3),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(1),     // x
 | |
|       static_cast<RealType>(0.117503),   // p
 | |
|       static_cast<RealType>(1-0.117503),   // q
 | |
|       tolerance);
 | |
|    check_weibull(
 | |
|       static_cast<RealType>(3),     // shape
 | |
|       static_cast<RealType>(2),     // scale
 | |
|       static_cast<RealType>(2),     // x
 | |
|       static_cast<RealType>(1-0.367879),   // p
 | |
|       static_cast<RealType>(0.367879),   // q
 | |
|       tolerance);
 | |
| 
 | |
|    //
 | |
|    // Tests for PDF
 | |
|    //
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(0.25, 0.5), static_cast<RealType>(0.1)), 
 | |
|       static_cast<RealType>(0.856579), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(0.25, 0.5), static_cast<RealType>(0.5)), 
 | |
|       static_cast<RealType>(0.183940), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(0.25, 0.5), static_cast<RealType>(5)), 
 | |
|       static_cast<RealType>(0.015020), 
 | |
|       tolerance * 10); // fewer digits in test value
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(0.5, 2), static_cast<RealType>(0.1)), 
 | |
|       static_cast<RealType>(0.894013), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(0.5, 2), static_cast<RealType>(0.5)), 
 | |
|       static_cast<RealType>(0.303265), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(0.5, 2), static_cast<RealType>(1)), 
 | |
|       static_cast<RealType>(0.174326), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(2, 0.25), static_cast<RealType>(0.1)), 
 | |
|       static_cast<RealType>(2.726860), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(2, 0.25), static_cast<RealType>(0.5)), 
 | |
|       static_cast<RealType>(0.293050), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(3, 2), static_cast<RealType>(1)), 
 | |
|       static_cast<RealType>(0.330936), 
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       pdf(weibull_distribution<RealType>(3, 2), static_cast<RealType>(2)), 
 | |
|       static_cast<RealType>(0.551819), 
 | |
|       tolerance);
 | |
| 
 | |
|    //
 | |
|    // These test values were obtained using the formulas at 
 | |
|    // http://en.wikipedia.org/wiki/Weibull_distribution
 | |
|    // which are subtly different to (though mathematically
 | |
|    // the same as) the ones on the Mathworld site
 | |
|    // http://mathworld.wolfram.com/WeibullDistribution.html
 | |
|    // which are the ones used in the implementation.
 | |
|    // The assumption is that if both computation methods
 | |
|    // agree then the implementation is probably correct...
 | |
|    // What's not clear is which method is more accurate.
 | |
|    //
 | |
|    tolerance = (std::max)(
 | |
|       boost::math::tools::epsilon<RealType>(),
 | |
|       static_cast<RealType>(boost::math::tools::epsilon<double>())) * 5 * 100; // 5 eps as a percentage
 | |
|    cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;
 | |
|    weibull_distribution<RealType> dist(2, 3);
 | |
|    RealType x = static_cast<RealType>(0.125);
 | |
| 
 | |
|    BOOST_MATH_STD_USING // ADL of std lib math functions
 | |
| 
 | |
|    // mean:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       mean(dist)
 | |
|       , dist.scale() * boost::math::tgamma(1 + 1 / dist.shape()), tolerance);
 | |
|    // variance:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       variance(dist)
 | |
|       , dist.scale() * dist.scale() * boost::math::tgamma(1 + 2 / dist.shape()) - mean(dist) * mean(dist), tolerance);
 | |
|    // std deviation:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     standard_deviation(dist)
 | |
|     , sqrt(variance(dist)), tolerance);
 | |
|    // hazard:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     hazard(dist, x)
 | |
|     , pdf(dist, x) / cdf(complement(dist, x)), tolerance);
 | |
|    // cumulative hazard:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     chf(dist, x)
 | |
|     , -log(cdf(complement(dist, x))), tolerance);
 | |
|    // coefficient_of_variation:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     coefficient_of_variation(dist)
 | |
|     , standard_deviation(dist) / mean(dist), tolerance);
 | |
|    // mode:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     mode(dist)
 | |
|     , dist.scale() * pow((dist.shape() - 1) / dist.shape(), 1/dist.shape()), tolerance);
 | |
|    // median:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     median(dist)
 | |
|     , dist.scale() * pow(log(static_cast<RealType>(2)), 1 / dist.shape()), tolerance);
 | |
|    // skewness:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     skewness(dist), 
 | |
|     (boost::math::tgamma(1 + 3/dist.shape()) * pow(dist.scale(), RealType(3)) - 3 * mean(dist) * variance(dist) - pow(mean(dist), RealType(3))) / pow(standard_deviation(dist), RealType(3)), 
 | |
|     tolerance * 100);
 | |
|    // kertosis:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     kurtosis(dist)
 | |
|     , kurtosis_excess(dist) + 3, tolerance);
 | |
|    // kertosis excess:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|     kurtosis_excess(dist), 
 | |
|     (pow(dist.scale(), RealType(4)) * boost::math::tgamma(1 + 4/dist.shape()) 
 | |
|          - 3 * variance(dist) * variance(dist) 
 | |
|          - 4 * skewness(dist) * variance(dist) * standard_deviation(dist) * mean(dist)
 | |
|          - 6 * variance(dist) * mean(dist) * mean(dist) 
 | |
|          - pow(mean(dist), RealType(4))) / (variance(dist) * variance(dist)), 
 | |
|     tolerance * 1000);
 | |
| 
 | |
|    //
 | |
|    // Special cases:
 | |
|    //
 | |
|    BOOST_CHECK(cdf(dist, 0) == 0);
 | |
|    BOOST_CHECK(cdf(complement(dist, 0)) == 1);
 | |
|    BOOST_CHECK(quantile(dist, 0) == 0);
 | |
|    BOOST_CHECK(quantile(complement(dist, 1)) == 0);
 | |
| 
 | |
|    BOOST_CHECK_EQUAL(pdf(weibull_distribution<RealType>(1, 1), 0), 1);
 | |
| 
 | |
|    //
 | |
|    // Error checks:
 | |
|    //
 | |
|    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(1, -1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(-1, 1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(1, 0), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(0, 1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(quantile(dist, 1), std::overflow_error);
 | |
|    BOOST_MATH_CHECK_THROW(quantile(complement(dist, 0)), std::overflow_error);
 | |
|    BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error);
 | |
| 
 | |
|    BOOST_CHECK_EQUAL(pdf(dist, 0), exp(-pow(RealType(0) / RealType(3), RealType(2))) * pow(RealType(0), RealType(1)) * RealType(2) / RealType(3));
 | |
|    BOOST_CHECK_EQUAL(pdf(weibull_distribution<RealType>(1, 3), 0), exp(-pow(RealType(0) / RealType(3), RealType(1))) * pow(RealType(0), RealType(0)) * RealType(1) / RealType(3));
 | |
|    BOOST_MATH_CHECK_THROW(pdf(weibull_distribution<RealType>(0.5, 3), 0), std::overflow_error);
 | |
| 
 | |
|    check_out_of_range<weibull_distribution<RealType> >(1, 1);
 | |
| } // template <class RealType>void test_spots(RealType)
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE( test_main )
 | |
| {
 | |
| 
 | |
|   // Check that can construct weibull distribution using the two convenience methods:
 | |
|   using namespace boost::math;
 | |
|   weibull myw1(2); // Using typedef
 | |
|    weibull_distribution<> myw2(2); // Using default RealType double.
 | |
| 
 | |
|     // Basic sanity-check spot values.
 | |
|    // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | |
|   test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
 | |
|   test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
 | |
| #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | |
|   test_spots(0.0L); // Test long double.
 | |
| #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))
 | |
|   test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | |
| #endif
 | |
| #else
 | |
|    std::cout << "<note>The long double tests have been disabled on this platform "
 | |
|       "either because the long double overloads of the usual math functions are "
 | |
|       "not available at all, or because they are too inaccurate for these tests "
 | |
|       "to pass.</note>" << std::endl;
 | |
| #endif
 | |
| 
 | |
|    
 | |
| } // BOOST_AUTO_TEST_CASE( test_main )
 | |
| 
 | |
| /*
 | |
| 
 | |
| Output:
 | |
| 
 | |
|   Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_weibull.exe"
 | |
|   Running 1 test case...
 | |
|   Tolerance for type float is 0.002 %
 | |
|   Tolerance for type float is 5.96046e-005 %
 | |
|   Tolerance for type double is 0.002 %
 | |
|   Tolerance for type double is 1.11022e-013 %
 | |
|   Tolerance for type long double is 0.002 %
 | |
|   Tolerance for type long double is 1.11022e-013 %
 | |
|   Tolerance for type class boost::math::concepts::real_concept is 0.002 %
 | |
|   Tolerance for type class boost::math::concepts::real_concept is 1.11022e-013 %
 | |
|   
 | |
|   *** No errors detected
 | |
| 
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 |