mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			394 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| [section:tr1_ref TR1 C Functions Quick Reference]
 | |
| 
 | |
| 
 | |
| [h4 Supported TR1 Functions]
 | |
| 
 | |
|    namespace boost{ namespace math{ namespace tr1{ extern "C"{
 | |
|       
 | |
|    // [5.2.1.1] associated Laguerre polynomials:
 | |
|    double assoc_laguerre(unsigned n, unsigned m, double x);
 | |
|    float assoc_laguerref(unsigned n, unsigned m, float x);
 | |
|    long double assoc_laguerrel(unsigned n, unsigned m, long double x);
 | |
| 
 | |
|    // [5.2.1.2] associated Legendre functions:
 | |
|    double assoc_legendre(unsigned l, unsigned m, double x);
 | |
|    float assoc_legendref(unsigned l, unsigned m, float x);
 | |
|    long double assoc_legendrel(unsigned l, unsigned m, long double x);
 | |
| 
 | |
|    // [5.2.1.3] beta function:
 | |
|    double beta(double x, double y);
 | |
|    float betaf(float x, float y);
 | |
|    long double betal(long double x, long double y);
 | |
| 
 | |
|    // [5.2.1.4] (complete) elliptic integral of the first kind:
 | |
|    double comp_ellint_1(double k);
 | |
|    float comp_ellint_1f(float k);
 | |
|    long double comp_ellint_1l(long double k);
 | |
| 
 | |
|    // [5.2.1.5] (complete) elliptic integral of the second kind:
 | |
|    double comp_ellint_2(double k);
 | |
|    float comp_ellint_2f(float k);
 | |
|    long double comp_ellint_2l(long double k);
 | |
| 
 | |
|    // [5.2.1.6] (complete) elliptic integral of the third kind:
 | |
|    double comp_ellint_3(double k, double nu);
 | |
|    float comp_ellint_3f(float k, float nu);
 | |
|    long double comp_ellint_3l(long double k, long double nu);
 | |
| 
 | |
|    // [5.2.1.8] regular modified cylindrical Bessel functions:
 | |
|    double cyl_bessel_i(double nu, double x);
 | |
|    float cyl_bessel_if(float nu, float x);
 | |
|    long double cyl_bessel_il(long double nu, long double x);
 | |
| 
 | |
|    // [5.2.1.9] cylindrical Bessel functions (of the first kind):
 | |
|    double cyl_bessel_j(double nu, double x);
 | |
|    float cyl_bessel_jf(float nu, float x);
 | |
|    long double cyl_bessel_jl(long double nu, long double x);
 | |
| 
 | |
|    // [5.2.1.10] irregular modified cylindrical Bessel functions:
 | |
|    double cyl_bessel_k(double nu, double x);
 | |
|    float cyl_bessel_kf(float nu, float x);
 | |
|    long double cyl_bessel_kl(long double nu, long double x);
 | |
| 
 | |
|    // [5.2.1.11] cylindrical Neumann functions;
 | |
|    // cylindrical Bessel functions (of the second kind):
 | |
|    double cyl_neumann(double nu, double x);
 | |
|    float cyl_neumannf(float nu, float x);
 | |
|    long double cyl_neumannl(long double nu, long double x);
 | |
| 
 | |
|    // [5.2.1.12] (incomplete) elliptic integral of the first kind:
 | |
|    double ellint_1(double k, double phi);
 | |
|    float ellint_1f(float k, float phi);
 | |
|    long double ellint_1l(long double k, long double phi);
 | |
| 
 | |
|    // [5.2.1.13] (incomplete) elliptic integral of the second kind:
 | |
|    double ellint_2(double k, double phi);
 | |
|    float ellint_2f(float k, float phi);
 | |
|    long double ellint_2l(long double k, long double phi);
 | |
| 
 | |
|    // [5.2.1.14] (incomplete) elliptic integral of the third kind:
 | |
|    double ellint_3(double k, double nu, double phi);
 | |
|    float ellint_3f(float k, float nu, float phi);
 | |
|    long double ellint_3l(long double k, long double nu, long double phi);
 | |
| 
 | |
|    // [5.2.1.15] exponential integral:
 | |
|    double expint(double x);
 | |
|    float expintf(float x);
 | |
|    long double expintl(long double x);
 | |
| 
 | |
|    // [5.2.1.16] Hermite polynomials:
 | |
|    double hermite(unsigned n, double x);
 | |
|    float hermitef(unsigned n, float x);
 | |
|    long double hermitel(unsigned n, long double x);
 | |
| 
 | |
|    // [5.2.1.18] Laguerre polynomials:
 | |
|    double laguerre(unsigned n, double x);
 | |
|    float laguerref(unsigned n, float x);
 | |
|    long double laguerrel(unsigned n, long double x);
 | |
| 
 | |
|    // [5.2.1.19] Legendre polynomials:
 | |
|    double legendre(unsigned l, double x);
 | |
|    float legendref(unsigned l, float x);
 | |
|    long double legendrel(unsigned l, long double x);
 | |
| 
 | |
|    // [5.2.1.20] Riemann zeta function:
 | |
|    double riemann_zeta(double);
 | |
|    float riemann_zetaf(float);
 | |
|    long double riemann_zetal(long double);
 | |
| 
 | |
|    // [5.2.1.21] spherical Bessel functions (of the first kind):
 | |
|    double sph_bessel(unsigned n, double x);
 | |
|    float sph_besself(unsigned n, float x);
 | |
|    long double sph_bessell(unsigned n, long double x);
 | |
| 
 | |
|    // [5.2.1.22] spherical associated Legendre functions:
 | |
|    double sph_legendre(unsigned l, unsigned m, double theta);
 | |
|    float sph_legendref(unsigned l, unsigned m, float theta);
 | |
|    long double sph_legendrel(unsigned l, unsigned m, long double theta);
 | |
| 
 | |
|    // [5.2.1.23] spherical Neumann functions;
 | |
|    // spherical Bessel functions (of the second kind):
 | |
|    double sph_neumann(unsigned n, double x);
 | |
|    float sph_neumannf(unsigned n, float x);
 | |
|    long double sph_neumannl(unsigned n, long double x);
 | |
|    
 | |
|    }}}} // namespaces
 | |
|    
 | |
| In addition sufficient additional overloads of the `double` versions of the
 | |
| above functions are provided, so that calling the function with any mixture
 | |
| of `float`, `double`, `long double`, or /integer/ arguments is supported, with the
 | |
| return type determined by the __arg_promotion_rules.
 | |
|    
 | |
| For example:
 | |
| 
 | |
|    expintf(2.0f);  // float version, returns float.
 | |
|    expint(2.0f);   // also calls the float version and returns float.
 | |
|    expint(2.0);    // double version, returns double.
 | |
|    expintl(2.0L);  // long double version, returns a long double.
 | |
|    expint(2.0L);   // also calls the long double version.
 | |
|    expint(2);      // integer argument is treated as a double, returns double.
 | |
| 
 | |
| [h4 Quick Reference]
 | |
| 
 | |
|    // [5.2.1.1] associated Laguerre polynomials:
 | |
|    double assoc_laguerre(unsigned n, unsigned m, double x);
 | |
|    float assoc_laguerref(unsigned n, unsigned m, float x);
 | |
|    long double assoc_laguerrel(unsigned n, unsigned m, long double x);
 | |
|    
 | |
| The assoc_laguerre functions return:
 | |
| 
 | |
| [equation laguerre_1]
 | |
| 
 | |
| See also __laguerre for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.2] associated Legendre functions:
 | |
|    double assoc_legendre(unsigned l, unsigned m, double x);
 | |
|    float assoc_legendref(unsigned l, unsigned m, float x);
 | |
|    long double assoc_legendrel(unsigned l, unsigned m, long double x);
 | |
| 
 | |
| The assoc_legendre functions return:
 | |
| 
 | |
| [equation legendre_1b]
 | |
| 
 | |
| See also __legendre for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.3] beta function:
 | |
|    double beta(double x, double y);
 | |
|    float betaf(float x, float y);
 | |
|    long double betal(long double x, long double y);
 | |
|    
 | |
| Returns the beta function of /x/ and /y/:
 | |
| 
 | |
| [equation beta1]
 | |
| 
 | |
| See also __beta for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.4] (complete) elliptic integral of the first kind:
 | |
|    double comp_ellint_1(double k);
 | |
|    float comp_ellint_1f(float k);
 | |
|    long double comp_ellint_1l(long double k);
 | |
| 
 | |
| Returns the complete elliptic integral of the first kind of /k/:
 | |
| 
 | |
| [equation ellint6]
 | |
| 
 | |
| See also __ellint_1 for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.5] (complete) elliptic integral of the second kind:
 | |
|    double comp_ellint_2(double k);
 | |
|    float comp_ellint_2f(float k);
 | |
|    long double comp_ellint_2l(long double k);
 | |
| 
 | |
| Returns the complete elliptic integral of the second kind of /k/:
 | |
| 
 | |
| [equation ellint7]
 | |
| 
 | |
| See also __ellint_2 for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.6] (complete) elliptic integral of the third kind:
 | |
|    double comp_ellint_3(double k, double nu);
 | |
|    float comp_ellint_3f(float k, float nu);
 | |
|    long double comp_ellint_3l(long double k, long double nu);
 | |
| 
 | |
| Returns the complete elliptic integral of the third kind of /k/ and /nu/:
 | |
| 
 | |
| [equation ellint8]
 | |
| 
 | |
| See also __ellint_3 for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.8] regular modified cylindrical Bessel functions:
 | |
|    double cyl_bessel_i(double nu, double x);
 | |
|    float cyl_bessel_if(float nu, float x);
 | |
|    long double cyl_bessel_il(long double nu, long double x);
 | |
| 
 | |
| Returns the modified bessel function of the first kind of /nu/ and /x/:
 | |
| 
 | |
| [equation mbessel2]
 | |
| 
 | |
| See also __cyl_bessel_i for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.9] cylindrical Bessel functions (of the first kind):
 | |
|    double cyl_bessel_j(double nu, double x);
 | |
|    float cyl_bessel_jf(float nu, float x);
 | |
|    long double cyl_bessel_jl(long double nu, long double x);
 | |
| 
 | |
| Returns the bessel function of the first kind of /nu/ and /x/:
 | |
| 
 | |
| [equation bessel2]
 | |
| 
 | |
| See also __cyl_bessel_j for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.10] irregular modified cylindrical Bessel functions:
 | |
|    double cyl_bessel_k(double nu, double x);
 | |
|    float cyl_bessel_kf(float nu, float x);
 | |
|    long double cyl_bessel_kl(long double nu, long double x);
 | |
| 
 | |
| Returns the modified bessel function of the second kind of /nu/ and /x/:
 | |
| 
 | |
| [equation mbessel3]
 | |
| 
 | |
| See also __cyl_bessel_k for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.11] cylindrical Neumann functions;
 | |
|    // cylindrical Bessel functions (of the second kind):
 | |
|    double cyl_neumann(double nu, double x);
 | |
|    float cyl_neumannf(float nu, float x);
 | |
|    long double cyl_neumannl(long double nu, long double x);
 | |
| 
 | |
| Returns the bessel function of the second kind (Neumann function) of /nu/ and /x/:
 | |
| 
 | |
| [equation bessel3]
 | |
| 
 | |
| See also __cyl_neumann for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.12] (incomplete) elliptic integral of the first kind:
 | |
|    double ellint_1(double k, double phi);
 | |
|    float ellint_1f(float k, float phi);
 | |
|    long double ellint_1l(long double k, long double phi);
 | |
| 
 | |
| Returns the incomplete elliptic integral of the first kind of /k/ and /phi/:
 | |
| 
 | |
| [equation ellint2]
 | |
| 
 | |
| See also __ellint_1 for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.13] (incomplete) elliptic integral of the second kind:
 | |
|    double ellint_2(double k, double phi);
 | |
|    float ellint_2f(float k, float phi);
 | |
|    long double ellint_2l(long double k, long double phi);
 | |
| 
 | |
| Returns the incomplete elliptic integral of the second kind of /k/ and /phi/:
 | |
| 
 | |
| [equation ellint3]
 | |
| 
 | |
| See also __ellint_2 for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.14] (incomplete) elliptic integral of the third kind:
 | |
|    double ellint_3(double k, double nu, double phi);
 | |
|    float ellint_3f(float k, float nu, float phi);
 | |
|    long double ellint_3l(long double k, long double nu, long double phi);
 | |
| 
 | |
| Returns the incomplete elliptic integral of the third kind of /k/, /nu/ and /phi/:
 | |
| 
 | |
| [equation ellint4]
 | |
| 
 | |
| See also __ellint_3 for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.15] exponential integral:
 | |
|    double expint(double x);
 | |
|    float expintf(float x);
 | |
|    long double expintl(long double x);
 | |
| 
 | |
| Returns the exponential integral Ei of /x/:
 | |
| 
 | |
| [equation expint_i_1]
 | |
| 
 | |
| See also __expint for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.16] Hermite polynomials:
 | |
|    double hermite(unsigned n, double x);
 | |
|    float hermitef(unsigned n, float x);
 | |
|    long double hermitel(unsigned n, long double x);
 | |
| 
 | |
| Returns the n'th Hermite polynomial of /x/:
 | |
| 
 | |
| [equation hermite_0]
 | |
| 
 | |
| See also __hermite for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.18] Laguerre polynomials:
 | |
|    double laguerre(unsigned n, double x);
 | |
|    float laguerref(unsigned n, float x);
 | |
|    long double laguerrel(unsigned n, long double x);
 | |
| 
 | |
| Returns the n'th Laguerre polynomial of /x/:
 | |
| 
 | |
| [equation laguerre_0]
 | |
| 
 | |
| See also __laguerre for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.19] Legendre polynomials:
 | |
|    double legendre(unsigned l, double x);
 | |
|    float legendref(unsigned l, float x);
 | |
|    long double legendrel(unsigned l, long double x);
 | |
| 
 | |
| Returns the l'th Legendre polynomial of /x/:
 | |
| 
 | |
| [equation legendre_0]
 | |
| 
 | |
| See also __legendre for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.20] Riemann zeta function:
 | |
|    double riemann_zeta(double);
 | |
|    float riemann_zetaf(float);
 | |
|    long double riemann_zetal(long double);
 | |
| 
 | |
| Returns the Riemann Zeta function of /x/:
 | |
| 
 | |
| [equation zeta1]
 | |
| 
 | |
| See also __zeta for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.21] spherical Bessel functions (of the first kind):
 | |
|    double sph_bessel(unsigned n, double x);
 | |
|    float sph_besself(unsigned n, float x);
 | |
|    long double sph_bessell(unsigned n, long double x);
 | |
| 
 | |
| Returns the spherical Bessel function of the first kind of /x/ j[sub n](x):
 | |
| 
 | |
| [equation sbessel2]
 | |
| 
 | |
| See also __sph_bessel for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.22] spherical associated Legendre functions:
 | |
|    double sph_legendre(unsigned l, unsigned m, double theta);
 | |
|    float sph_legendref(unsigned l, unsigned m, float theta);
 | |
|    long double sph_legendrel(unsigned l, unsigned m, long double theta);
 | |
|    
 | |
| Returns the spherical associated Legendre function of /l/, /m/ and /theta/:
 | |
| 
 | |
| [equation spherical_3]
 | |
| 
 | |
| See also __spherical_harmonic for the full template (header only) version of this function.
 | |
| 
 | |
|    // [5.2.1.23] spherical Neumann functions;
 | |
|    // spherical Bessel functions (of the second kind):
 | |
|    double sph_neumann(unsigned n, double x);
 | |
|    float sph_neumannf(unsigned n, float x);
 | |
|    long double sph_neumannl(unsigned n, long double x);
 | |
| 
 | |
| Returns the spherical Neumann function of /x/ y[sub n](x):
 | |
| 
 | |
| [equation sbessel2]
 | |
| 
 | |
| See also __sph_bessel for the full template (header only) version of this function.
 | |
| 
 | |
| 
 | |
| 
 | |
| [h4 Currently Unsupported TR1 Functions]
 | |
| 
 | |
|    // [5.2.1.7] confluent hypergeometric functions:
 | |
|    double conf_hyperg(double a, double c, double x);
 | |
|    float conf_hypergf(float a, float c, float x);
 | |
|    long double conf_hypergl(long double a, long double c, long double x);
 | |
| 
 | |
|    // [5.2.1.17] hypergeometric functions:
 | |
|    double hyperg(double a, double b, double c, double x);
 | |
|    float hypergf(float a, float b, float c, float x);
 | |
|    long double hypergl(long double a, long double b, long double c,
 | |
|    long double x);
 | |
|    
 | |
| [note These two functions are not implemented as they are not believed
 | |
| to be numerically stable.]
 | |
| 
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [/ 
 | |
|   Copyright 2008, 2009 John Maddock and Paul A. Bristow.
 | |
|   Distributed under the Boost Software License, Version 1.0.
 | |
|   (See accompanying file LICENSE_1_0.txt or copy at
 | |
|   http://www.boost.org/LICENSE_1_0.txt).
 | |
| ]
 | |
| 
 |