mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			450 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2015
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
 | |
| // Note that this file contains Quickbook mark-up as well as code
 | |
| // and comments, don't change any of the special comment mark-ups!
 | |
| // This program also writes files in Quickbook tables mark-up format.
 | |
| 
 | |
| #include <boost/cstdlib.hpp>
 | |
| #include <boost/config.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| #include <boost/math/special_functions/ellint_1.hpp>
 | |
| #include <boost/math/special_functions/ellint_2.hpp>
 | |
| template <class T>
 | |
| struct cbrt_functor_noderiv
 | |
| {
 | |
|    //  cube root of x using only function - no derivatives.
 | |
|    cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
 | |
|    { /* Constructor just stores value a to find root of. */
 | |
|    }
 | |
|    T operator()(T const& x)
 | |
|    {
 | |
|       T fx = x*x*x - a; // Difference (estimate x^3 - a).
 | |
|       return fx;
 | |
|    }
 | |
| private:
 | |
|    T a; // to be 'cube_rooted'.
 | |
| };
 | |
| //] [/root_finding_noderiv_1
 | |
| 
 | |
| template <class T>
 | |
| boost::uintmax_t cbrt_noderiv(T x, T guess)
 | |
| {
 | |
|    // return cube root of x using bracket_and_solve (no derivatives).
 | |
|    using namespace std;                          // Help ADL of std functions.
 | |
|    using namespace boost::math::tools;           // For bracket_and_solve_root.
 | |
| 
 | |
|    T factor = 2;                                 // How big steps to take when searching.
 | |
| 
 | |
|    const boost::uintmax_t maxit = 20;            // Limit to maximum iterations.
 | |
|    boost::uintmax_t it = maxit;                  // Initally our chosen max iterations, but updated with actual.
 | |
|    bool is_rising = true;                        // So if result if guess^3 is too low, then try increasing guess.
 | |
|    int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
 | |
|    // Some fraction of digits is used to control how accurate to try to make the result.
 | |
|    int get_digits = digits - 3;                  // We have to have a non-zero interval at each step, so
 | |
|    // maximum accuracy is digits - 1.  But we also have to
 | |
|    // allow for inaccuracy in f(x), otherwise the last few
 | |
|    // iterations just thrash around.
 | |
|    eps_tolerance<T> tol(get_digits);             // Set the tolerance.
 | |
|    bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
 | |
|    return it;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| struct cbrt_functor_deriv
 | |
| { // Functor also returning 1st derivative.
 | |
|    cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
 | |
|    { // Constructor stores value a to find root of,
 | |
|       // for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.
 | |
|    }
 | |
|    std::pair<T, T> operator()(T const& x)
 | |
|    {
 | |
|       // Return both f(x) and f'(x).
 | |
|       T fx = x*x*x - a;                // Difference (estimate x^3 - value).
 | |
|       T dx = 3 * x*x;                 // 1st derivative = 3x^2.
 | |
|       return std::make_pair(fx, dx);   // 'return' both fx and dx.
 | |
|    }
 | |
| private:
 | |
|    T a;                               // Store value to be 'cube_rooted'.
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| boost::uintmax_t cbrt_deriv(T x, T guess)
 | |
| {
 | |
|    // return cube root of x using 1st derivative and Newton_Raphson.
 | |
|    using namespace boost::math::tools;
 | |
|    T min = guess / 100;                     // We don't really know what this should be!
 | |
|    T max = guess * 100;                     // We don't really know what this should be!
 | |
|    const int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
 | |
|    int get_digits = static_cast<int>(digits * 0.6);    // Accuracy doubles with each step, so stop when we have
 | |
|    // just over half the digits correct.
 | |
|    const boost::uintmax_t maxit = 20;
 | |
|    boost::uintmax_t it = maxit;
 | |
|    newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
 | |
|    return it;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| struct cbrt_functor_2deriv
 | |
| {
 | |
|    // Functor returning both 1st and 2nd derivatives.
 | |
|    cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
 | |
|    { // Constructor stores value a to find root of, for example:
 | |
|       // calling cbrt_functor_2deriv<T>(x) to get cube root of x,
 | |
|    }
 | |
|    std::tuple<T, T, T> operator()(T const& x)
 | |
|    {
 | |
|       // Return both f(x) and f'(x) and f''(x).
 | |
|       T fx = x*x*x - a;                     // Difference (estimate x^3 - value).
 | |
|       T dx = 3 * x*x;                       // 1st derivative = 3x^2.
 | |
|       T d2x = 6 * x;                        // 2nd derivative = 6x.
 | |
|       return std::make_tuple(fx, dx, d2x);  // 'return' fx, dx and d2x.
 | |
|    }
 | |
| private:
 | |
|    T a; // to be 'cube_rooted'.
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| boost::uintmax_t cbrt_2deriv(T x, T guess)
 | |
| { 
 | |
|    // return cube root of x using 1st and 2nd derivatives and Halley.
 | |
|    //using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools;
 | |
|    T min = guess / 100;                     // We don't really know what this should be!
 | |
|    T max = guess * 100;                     // We don't really know what this should be!
 | |
|    const int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
 | |
|    // digits used to control how accurate to try to make the result.
 | |
|    int get_digits = static_cast<int>(digits * 0.4);    // Accuracy triples with each step, so stop when just
 | |
|    // over one third of the digits are correct.
 | |
|    boost::uintmax_t maxit = 20;
 | |
|    halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
 | |
|    return maxit;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| boost::uintmax_t cbrt_2deriv_s(T x, T guess)
 | |
| { 
 | |
|    // return cube root of x using 1st and 2nd derivatives and Halley.
 | |
|    //using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools;
 | |
|    T min = guess / 100;                     // We don't really know what this should be!
 | |
|    T max = guess * 100;                     // We don't really know what this should be!
 | |
|    const int digits = std::numeric_limits<T>::digits;  // Maximum possible binary digits accuracy for type T.
 | |
|    // digits used to control how accurate to try to make the result.
 | |
|    int get_digits = static_cast<int>(digits * 0.4);    // Accuracy triples with each step, so stop when just
 | |
|    // over one third of the digits are correct.
 | |
|    boost::uintmax_t maxit = 20;
 | |
|    schroder_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
 | |
|    return maxit;
 | |
| }
 | |
| 
 | |
| template <typename T = double>
 | |
| struct elliptic_root_functor_noderiv
 | |
| { 
 | |
|    elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
 | |
|    { // Constructor just stores value a to find root of.
 | |
|    }
 | |
|    T operator()(T const& x)
 | |
|    {
 | |
|       // return the difference between required arc-length, and the calculated arc-length for an
 | |
|       // ellipse with radii m_radius and x:
 | |
|       T a = (std::max)(m_radius, x);
 | |
|       T b = (std::min)(m_radius, x);
 | |
|       T k = sqrt(1 - b * b / (a * a));
 | |
|       return 4 * a * boost::math::ellint_2(k) - m_arc;
 | |
|    }
 | |
| private:
 | |
|    T m_arc;     // length of arc.
 | |
|    T m_radius;  // one of the two radii of the ellipse
 | |
| }; // template <class T> struct elliptic_root_functor_noderiv
 | |
| 
 | |
| template <class T = double>
 | |
| boost::uintmax_t elliptic_root_noderiv(T radius, T arc, T guess)
 | |
| { // return the other radius of an ellipse, given one radii and the arc-length
 | |
|    using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For bracket_and_solve_root.
 | |
| 
 | |
|    T factor = 2;                       // How big steps to take when searching.
 | |
| 
 | |
|    const boost::uintmax_t maxit = 50;  // Limit to maximum iterations.
 | |
|    boost::uintmax_t it = maxit;        // Initally our chosen max iterations, but updated with actual.
 | |
|    bool is_rising = true;              // arc-length increases if one radii increases, so function is rising
 | |
|    // Define a termination condition, stop when nearly all digits are correct, but allow for
 | |
|    // the fact that we are returning a range, and must have some inaccuracy in the elliptic integral:
 | |
|    eps_tolerance<T> tol(std::numeric_limits<T>::digits - 2);
 | |
|    // Call bracket_and_solve_root to find the solution, note that this is a rising function:
 | |
|    bracket_and_solve_root(elliptic_root_functor_noderiv<T>(arc, radius), guess, factor, is_rising, tol, it);
 | |
|    return it;
 | |
| } 
 | |
| 
 | |
| template <class T = double>
 | |
| struct elliptic_root_functor_1deriv
 | |
| { // Functor also returning 1st derviative.
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
 | |
|    { // Constructor just stores value a to find root of.
 | |
|    }
 | |
|    std::pair<T, T> operator()(T const& x)
 | |
|    {
 | |
|       // Return the difference between required arc-length, and the calculated arc-length for an
 | |
|       // ellipse with radii m_radius and x, plus it's derivative.
 | |
|       // See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
 | |
|       // We require two elliptic integral calls, but from these we can calculate both
 | |
|       // the function and it's derivative:
 | |
|       T a = (std::max)(m_radius, x);
 | |
|       T b = (std::min)(m_radius, x);
 | |
|       T a2 = a * a;
 | |
|       T b2 = b * b;
 | |
|       T k = sqrt(1 - b2 / a2);
 | |
|       T Ek = boost::math::ellint_2(k);
 | |
|       T Kk = boost::math::ellint_1(k);
 | |
|       T fx = 4 * a * Ek - m_arc;
 | |
|       T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
 | |
|       return std::make_pair(fx, dfx);
 | |
|    }
 | |
| private:
 | |
|    T m_arc;     // length of arc.
 | |
|    T m_radius;  // one of the two radii of the ellipse
 | |
| };  // struct elliptic_root__functor_1deriv
 | |
| 
 | |
| template <class T = double>
 | |
| boost::uintmax_t elliptic_root_1deriv(T radius, T arc, T guess)
 | |
| {
 | |
|    using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For newton_raphson_iterate.
 | |
| 
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    T min = 0;   // Minimum possible value is zero.
 | |
|    T max = arc; // Maximum possible value is the arc length.
 | |
| 
 | |
|    // Accuracy doubles at each step, so stop when just over half of the digits are
 | |
|    // correct, and rely on that step to polish off the remainder:
 | |
|    int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
 | |
|    const boost::uintmax_t maxit = 20;
 | |
|    boost::uintmax_t it = maxit;
 | |
|    newton_raphson_iterate(elliptic_root_functor_1deriv<T>(arc, radius), guess, min, max, get_digits, it);
 | |
|    return it;
 | |
| }
 | |
| 
 | |
| template <class T = double>
 | |
| struct elliptic_root_functor_2deriv
 | |
| { // Functor returning both 1st and 2nd derivatives.
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {}
 | |
|    std::tuple<T, T, T> operator()(T const& x)
 | |
|    {
 | |
|       // Return the difference between required arc-length, and the calculated arc-length for an
 | |
|       // ellipse with radii m_radius and x, plus it's derivative.
 | |
|       // See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
 | |
|       // for the second derivative.
 | |
|       T a = (std::max)(m_radius, x);
 | |
|       T b = (std::min)(m_radius, x);
 | |
|       T a2 = a * a;
 | |
|       T b2 = b * b;
 | |
|       T k = sqrt(1 - b2 / a2);
 | |
|       T Ek = boost::math::ellint_2(k);
 | |
|       T Kk = boost::math::ellint_1(k);
 | |
|       T fx = 4 * a * Ek - m_arc;
 | |
|       T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
 | |
|       T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2));
 | |
|       return std::make_tuple(fx, dfx, dfx2);
 | |
|    }
 | |
| private:
 | |
|    T m_arc;     // length of arc.
 | |
|    T m_radius;  // one of the two radii of the ellipse
 | |
| };
 | |
| 
 | |
| template <class T = double>
 | |
| boost::uintmax_t elliptic_root_2deriv(T radius, T arc, T guess)
 | |
| {
 | |
|    using namespace std;                // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For halley_iterate.
 | |
| 
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    T min = 0;                                   // Minimum possible value is zero.
 | |
|    T max = arc;                                 // radius can't be larger than the arc length.
 | |
| 
 | |
|    // Accuracy triples at each step, so stop when just over one-third of the digits
 | |
|    // are correct, and the last iteration will polish off the remaining digits:
 | |
|    int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
 | |
|    const boost::uintmax_t maxit = 20;
 | |
|    boost::uintmax_t it = maxit;
 | |
|    halley_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
 | |
|    return it;
 | |
| } // nth_2deriv Halley
 | |
| //]
 | |
| // Using 1st and 2nd derivatives using Schroder algorithm.
 | |
| 
 | |
| template <class T = double>
 | |
| boost::uintmax_t elliptic_root_2deriv_s(T radius, T arc, T guess)
 | |
| { // return nth root of x using 1st and 2nd derivatives and Schroder.
 | |
| 
 | |
|    using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For schroder_iterate.
 | |
| 
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    T min = 0; // Minimum possible value is zero.
 | |
|    T max = arc; // radius can't be larger than the arc length.
 | |
| 
 | |
|    int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|    int get_digits = static_cast<int>(digits * 0.4);
 | |
|    const boost::uintmax_t maxit = 20;
 | |
|    boost::uintmax_t it = maxit;
 | |
|    schroder_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
 | |
|    return it;
 | |
| } // T elliptic_root_2deriv_s Schroder
 | |
| 
 | |
| 
 | |
| int main()
 | |
| {
 | |
|    try
 | |
|    {
 | |
|       double to_root = 500;
 | |
|       double answer = 7.93700525984;
 | |
| 
 | |
|       std::cout << "[table\n"
 | |
|          << "[[Initial Guess=][-500% ([approx]1.323)][-100% ([approx]3.97)][-50% ([approx]3.96)][-20% ([approx]6.35)][-10% ([approx]7.14)][-5% ([approx]7.54)]"
 | |
|          "[5% ([approx]8.33)][10% ([approx]8.73)][20% ([approx]9.52)][50% ([approx]11.91)][100% ([approx]15.87)][500 ([approx]47.6)]]\n";
 | |
|       std::cout << "[[bracket_and_solve_root]["
 | |
|          << cbrt_noderiv(to_root, answer / 6)
 | |
|          << "][" << cbrt_noderiv(to_root, answer / 2)
 | |
|          << "][" << cbrt_noderiv(to_root, answer - answer * 0.5)
 | |
|          << "][" << cbrt_noderiv(to_root, answer - answer * 0.2)
 | |
|          << "][" << cbrt_noderiv(to_root, answer - answer * 0.1)
 | |
|          << "][" << cbrt_noderiv(to_root, answer - answer * 0.05)
 | |
|          << "][" << cbrt_noderiv(to_root, answer + answer * 0.05)
 | |
|          << "][" << cbrt_noderiv(to_root, answer + answer * 0.1)
 | |
|          << "][" << cbrt_noderiv(to_root, answer + answer * 0.2)
 | |
|          << "][" << cbrt_noderiv(to_root, answer + answer * 0.5)
 | |
|          << "][" << cbrt_noderiv(to_root, answer + answer)
 | |
|          << "][" << cbrt_noderiv(to_root, answer + answer * 5) << "]]\n";
 | |
| 
 | |
|       std::cout << "[[newton_iterate]["
 | |
|          << cbrt_deriv(to_root, answer / 6)
 | |
|          << "][" << cbrt_deriv(to_root, answer / 2)
 | |
|          << "][" << cbrt_deriv(to_root, answer - answer * 0.5)
 | |
|          << "][" << cbrt_deriv(to_root, answer - answer * 0.2)
 | |
|          << "][" << cbrt_deriv(to_root, answer - answer * 0.1)
 | |
|          << "][" << cbrt_deriv(to_root, answer - answer * 0.05)
 | |
|          << "][" << cbrt_deriv(to_root, answer + answer * 0.05)
 | |
|          << "][" << cbrt_deriv(to_root, answer + answer * 0.1)
 | |
|          << "][" << cbrt_deriv(to_root, answer + answer * 0.2)
 | |
|          << "][" << cbrt_deriv(to_root, answer + answer * 0.5)
 | |
|          << "][" << cbrt_deriv(to_root, answer + answer)
 | |
|          << "][" << cbrt_deriv(to_root, answer + answer * 5) << "]]\n";
 | |
| 
 | |
|       std::cout << "[[halley_iterate]["
 | |
|          << cbrt_2deriv(to_root, answer / 6)
 | |
|          << "][" << cbrt_2deriv(to_root, answer / 2)
 | |
|          << "][" << cbrt_2deriv(to_root, answer - answer * 0.5)
 | |
|          << "][" << cbrt_2deriv(to_root, answer - answer * 0.2)
 | |
|          << "][" << cbrt_2deriv(to_root, answer - answer * 0.1)
 | |
|          << "][" << cbrt_2deriv(to_root, answer - answer * 0.05)
 | |
|          << "][" << cbrt_2deriv(to_root, answer + answer * 0.05)
 | |
|          << "][" << cbrt_2deriv(to_root, answer + answer * 0.1)
 | |
|          << "][" << cbrt_2deriv(to_root, answer + answer * 0.2)
 | |
|          << "][" << cbrt_2deriv(to_root, answer + answer * 0.5)
 | |
|          << "][" << cbrt_2deriv(to_root, answer + answer)
 | |
|          << "][" << cbrt_2deriv(to_root, answer + answer * 5) << "]]\n";
 | |
| 
 | |
|       std::cout << "[[schr'''ö'''der_iterate]["
 | |
|          << cbrt_2deriv_s(to_root, answer / 6)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer / 2)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.5)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.2)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.1)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer - answer * 0.05)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.05)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.1)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.2)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer + answer * 0.5)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer + answer)
 | |
|          << "][" << cbrt_2deriv_s(to_root, answer + answer * 5) << "]]\n]\n\n";
 | |
| 
 | |
| 
 | |
|       double radius_a = 10;
 | |
|       double arc_length = 500;
 | |
|       double radius_b = 123.6216507967705;
 | |
| 
 | |
|       std::cout << std::setprecision(4) << "[table\n"
 | |
|          << "[[Initial Guess=][-500% ([approx]" << radius_b / 6 << ")][-100% ([approx]" << radius_b / 2 << ")][-50% ([approx]"
 | |
|          << radius_b - radius_b * 0.5 << ")][-20% ([approx]" << radius_b - radius_b * 0.2 << ")][-10% ([approx]" << radius_b - radius_b * 0.1 << ")][-5% ([approx]" << radius_b - radius_b * 0.05 << ")]"
 | |
|          "[5% ([approx]" << radius_b + radius_b * 0.05 << ")][10% ([approx]" << radius_b + radius_b * 0.1 << ")][20% ([approx]" << radius_b + radius_b * 0.2 << ")][50% ([approx]" << radius_b + radius_b * 0.5 
 | |
|          << ")][100% ([approx]" << radius_b + radius_b << ")][500 ([approx]" << radius_b + radius_b * 5 << ")]]\n";
 | |
|       std::cout << "[[bracket_and_solve_root]["
 | |
|          << elliptic_root_noderiv(radius_a, arc_length, radius_b / 6)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b / 2)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.5)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.2)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.1)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.05)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.05)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.1)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.2)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.5)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b)
 | |
|          << "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";
 | |
| 
 | |
|       std::cout << "[[newton_iterate]["
 | |
|          << elliptic_root_1deriv(radius_a, arc_length, radius_b / 6)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b / 2)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.5)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.2)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.1)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.05)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.05)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.1)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.2)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.5)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b)
 | |
|          << "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";
 | |
| 
 | |
|       std::cout << "[[halley_iterate]["
 | |
|          << elliptic_root_2deriv(radius_a, arc_length, radius_b / 6)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b / 2)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.5)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.2)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.1)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.05)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.05)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.1)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.2)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.5)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b)
 | |
|          << "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";
 | |
| 
 | |
|       std::cout << "[[schr'''ö'''der_iterate]["
 | |
|          << elliptic_root_2deriv_s(radius_a, arc_length, radius_b / 6)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b / 2)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.5)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.2)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.1)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.05)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.05)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.1)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.2)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.5)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b)
 | |
|          << "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n]\n\n";
 | |
| 
 | |
|       return boost::exit_success;
 | |
|    }
 | |
|    catch(std::exception ex)
 | |
|    {
 | |
|       std::cout << "exception thrown: " << ex.what() << std::endl;
 | |
|       return boost::exit_failure;
 | |
|    }
 | |
| } // int main()
 | |
| 
 |