mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			193 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2006.
 | |
| // Copyright Paul A. Bristow 2007, 2009
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | |
| 
 | |
| #include <boost/math/concepts/real_concept.hpp>
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/results_collector.hpp>
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/tools/stats.hpp>
 | |
| #include <boost/math/tools/test.hpp>
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <boost/type_traits/is_floating_point.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include "functor.hpp"
 | |
| #include "table_type.hpp"
 | |
| #include "handle_test_result.hpp"
 | |
| 
 | |
| #ifndef SC_
 | |
| #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
 | |
| #endif
 | |
| 
 | |
| #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
 | |
|    {\
 | |
|       unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
 | |
|       BOOST_CHECK_CLOSE(a, b, prec); \
 | |
|       if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
 | |
|       {\
 | |
|          std::cerr << "Failure was at row " << i << std::endl;\
 | |
|          std::cerr << std::setprecision(35); \
 | |
|          std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
 | |
|          std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\
 | |
|       }\
 | |
|    }
 | |
| 
 | |
| template <class Real, class T>
 | |
| void do_test_gamma_2(const T& data, const char* type_name, const char* test_name)
 | |
| {
 | |
|    //
 | |
|    // test gamma_p_inva(T, T) against data:
 | |
|    //
 | |
|    using namespace std;
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    std::cout << test_name << " with type " << type_name << std::endl;
 | |
| 
 | |
|    //
 | |
|    // These sanity checks test for a round trip accuracy of one half
 | |
|    // of the bits in T, unless T is type float, in which case we check
 | |
|    // for just one decimal digit.  The problem here is the sensitivity
 | |
|    // of the functions, not their accuracy.  This test data was generated
 | |
|    // for the forward functions, which means that when it is used as
 | |
|    // the input to the inverses then it is necessarily inexact.  This rounding
 | |
|    // of the input is what makes the data unsuitable for use as an accuracy check,
 | |
|    // and also demonstrates that you can't in general round-trip these functions.
 | |
|    // It is however a useful sanity check.
 | |
|    //
 | |
|    value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
 | |
|    if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
 | |
|       precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float
 | |
| 
 | |
|    for(unsigned i = 0; i < data.size(); ++i)
 | |
|    {
 | |
|       //
 | |
|       // These inverse tests are thrown off if the output of the
 | |
|       // incomplete gamma is too close to 1: basically there is insuffient
 | |
|       // information left in the value we're using as input to the inverse
 | |
|       // to be able to get back to the original value.
 | |
|       //
 | |
|       if(Real(data[i][5]) == 0)
 | |
|          BOOST_CHECK_EQUAL(boost::math::gamma_p_inva(Real(data[i][1]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
 | |
|       else if((1 - Real(data[i][5]) > 0.001) && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>()))
 | |
|       {
 | |
|          value_type inv = boost::math::gamma_p_inva(Real(data[i][1]), Real(data[i][5]));
 | |
|          BOOST_CHECK_CLOSE_EX(Real(data[i][0]), inv, precision, i);
 | |
|       }
 | |
|       else if(1 == Real(data[i][5]))
 | |
|          BOOST_CHECK_EQUAL(boost::math::gamma_p_inva(Real(data[i][1]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
 | |
|       else if(Real(data[i][5]) > 2 * boost::math::tools::min_value<value_type>())
 | |
|       {
 | |
|          // not enough bits in our input to get back to x, but we should be in
 | |
|          // the same ball park:
 | |
|          value_type inv = boost::math::gamma_p_inva(Real(data[i][1]), Real(data[i][5]));
 | |
|          BOOST_CHECK_CLOSE_EX(Real(data[i][0]), inv, 100, i);
 | |
|       }
 | |
| 
 | |
|       if(Real(data[i][3]) == 0)
 | |
|          BOOST_CHECK_EQUAL(boost::math::gamma_q_inva(Real(data[i][1]), Real(data[i][3])), boost::math::tools::min_value<value_type>());
 | |
|       else if((1 - Real(data[i][3]) > 0.001) 
 | |
|          && (fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>()) 
 | |
|          && (fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<double>()))
 | |
|       {
 | |
|          value_type inv = boost::math::gamma_q_inva(Real(data[i][1]), Real(data[i][3]));
 | |
|          BOOST_CHECK_CLOSE_EX(Real(data[i][0]), inv, precision, i);
 | |
|       }
 | |
|       else if(1 == Real(data[i][3]))
 | |
|          BOOST_CHECK_EQUAL(boost::math::gamma_q_inva(Real(data[i][1]), Real(data[i][3])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
 | |
|       else if(Real(data[i][3]) > 2 * boost::math::tools::min_value<value_type>()) 
 | |
|       {
 | |
|          // not enough bits in our input to get back to x, but we should be in
 | |
|          // the same ball park:
 | |
|          value_type inv = boost::math::gamma_q_inva(Real(data[i][1]), Real(data[i][3]));
 | |
|          BOOST_CHECK_CLOSE_EX(Real(data[i][0]), inv, 100, i);
 | |
|       }
 | |
|    }
 | |
|    std::cout << std::endl;
 | |
| }
 | |
| 
 | |
| template <class Real, class T>
 | |
| void do_test_gamma_inva(const T& data, const char* type_name, const char* test_name)
 | |
| {
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(GAMMAP_INVA_FUNCTION_TO_TEST))
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    typedef value_type (*pg)(value_type, value_type);
 | |
| #ifdef GAMMAP_INVA_FUNCTION_TO_TEST
 | |
|    pg funcp = GAMMAP_INVA_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|    pg funcp = boost::math::gamma_p_inva<value_type, value_type>;
 | |
| #else
 | |
|    pg funcp = boost::math::gamma_p_inva;
 | |
| #endif
 | |
| 
 | |
|    boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
|    std::cout << "Testing " << test_name << " with type " << type_name
 | |
|       << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
 | |
| 
 | |
|    //
 | |
|    // test gamma_p_inva(T, T) against data:
 | |
|    //
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(funcp, 0, 1),
 | |
|       extract_result<Real>(2));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_p_inva", test_name);
 | |
|    //
 | |
|    // test gamma_q_inva(T, T) against data:
 | |
|    //
 | |
| #ifdef GAMMAQ_INVA_FUNCTION_TO_TEST
 | |
|    funcp = GAMMAQ_INVA_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|    funcp = boost::math::gamma_q_inva<value_type, value_type>;
 | |
| #else
 | |
|    funcp = boost::math::gamma_q_inva;
 | |
| #endif
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(funcp, 0, 1),
 | |
|       extract_result<Real>(3));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_q_inva", test_name);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void test_gamma(T, const char* name)
 | |
| {
 | |
| #if !defined(TEST_UDT) && !defined(ERROR_REPORTING_MODE)
 | |
|    //
 | |
|    // The actual test data is rather verbose, so it's in a separate file
 | |
|    //
 | |
|    // First the data for the incomplete gamma function, each
 | |
|    // row has the following 6 entries:
 | |
|    // Parameter a, parameter z,
 | |
|    // Expected tgamma(a, z), Expected gamma_q(a, z)
 | |
|    // Expected tgamma_lower(a, z), Expected gamma_p(a, z)
 | |
|    //
 | |
| #  include "igamma_med_data.ipp"
 | |
| 
 | |
|    do_test_gamma_2<T>(igamma_med_data, name, "Running round trip sanity checks on incomplete gamma medium sized values");
 | |
| 
 | |
| #  include "igamma_small_data.ipp"
 | |
| 
 | |
|    do_test_gamma_2<T>(igamma_small_data, name, "Running round trip sanity checks on incomplete gamma small values");
 | |
| 
 | |
| #  include "igamma_big_data.ipp"
 | |
| 
 | |
|    do_test_gamma_2<T>(igamma_big_data, name, "Running round trip sanity checks on incomplete gamma large values");
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #  include "igamma_inva_data.ipp"
 | |
| 
 | |
|    do_test_gamma_inva<T>(igamma_inva_data, name, "Incomplete gamma inverses.");
 | |
| }
 | |
| 
 |