mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2007.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | |
| #include <boost/math/concepts/real_concept.hpp>
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/distributions/non_central_chi_squared.hpp> 
 | |
| #include <boost/type_traits/is_floating_point.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include "functor.hpp"
 | |
| 
 | |
| #include "handle_test_result.hpp"
 | |
| #include "table_type.hpp"
 | |
| 
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| 
 | |
| #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
 | |
|       {\
 | |
|       unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
 | |
|       BOOST_CHECK_CLOSE(a, b, prec); \
 | |
|       if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
 | |
|             {\
 | |
|          std::cerr << "Failure was at row " << i << std::endl;\
 | |
|          std::cerr << std::setprecision(35); \
 | |
|          std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
 | |
|          std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
 | |
|             }\
 | |
|       }
 | |
| 
 | |
| #define BOOST_CHECK_EX(a, i) \
 | |
|       {\
 | |
|       unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
 | |
|       BOOST_CHECK(a); \
 | |
|       if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
 | |
|             {\
 | |
|          std::cerr << "Failure was at row " << i << std::endl;\
 | |
|          std::cerr << std::setprecision(35); \
 | |
|          std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
 | |
|          std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
 | |
|             }\
 | |
|       }
 | |
| 
 | |
| template <class RealType>
 | |
| RealType naive_pdf(RealType v, RealType lam, RealType x)
 | |
| {
 | |
|    // Formula direct from 
 | |
|    // http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
 | |
|    // with no simplification:
 | |
|    RealType sum, term, prefix(1);
 | |
|    RealType eps = boost::math::tools::epsilon<RealType>();
 | |
|    term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x);
 | |
|    for(int i = 1;; ++i)
 | |
|    {
 | |
|       prefix *= lam / (2 * i);
 | |
|       term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x);
 | |
|       sum += term;
 | |
|       if(term / sum < eps)
 | |
|          break;
 | |
|    }
 | |
|    return sum * exp(-lam / 2);
 | |
| }
 | |
| 
 | |
| template <class RealType>
 | |
| void test_spot(
 | |
|    RealType df,    // Degrees of freedom
 | |
|    RealType ncp,   // non-centrality param
 | |
|    RealType cs,    // Chi Square statistic
 | |
|    RealType P,     // CDF
 | |
|    RealType Q,     // Complement of CDF
 | |
|    RealType tol)   // Test tolerance
 | |
| {
 | |
|    boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       cdf(dist, cs), P, tol);
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|    try{
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 150);
 | |
|    }
 | |
|    catch(const std::overflow_error&)
 | |
|    {
 | |
|    }
 | |
| #endif
 | |
|    if((P < 0.99) && (Q < 0.99))
 | |
|    {
 | |
|       //
 | |
|       // We can only check this if P is not too close to 1,
 | |
|       // so that we can guarantee Q is reasonably free of error:
 | |
|       //
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          cdf(complement(dist, cs)), Q, tol);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          quantile(dist, P), cs, tol * 10);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          quantile(complement(dist, Q)), cs, tol * 10);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          dist.find_non_centrality(df, cs, P), ncp, tol * 10);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10);
 | |
|    }
 | |
| }
 | |
| 
 | |
| template <class RealType> // Any floating-point type RealType.
 | |
| void test_spots(RealType)
 | |
| {
 | |
| #ifndef ERROR_REPORTING_MODE
 | |
|    RealType tolerance = (std::max)(
 | |
|       boost::math::tools::epsilon<RealType>(),
 | |
|       (RealType)boost::math::tools::epsilon<double>() * 5) * 150;
 | |
|    //
 | |
|    // At float precision we need to up the tolerance, since 
 | |
|    // the input values are rounded off to inexact quantities
 | |
|    // the results get thrown off by a noticeable amount.
 | |
|    //
 | |
|    if(boost::math::tools::digits<RealType>() < 50)
 | |
|       tolerance *= 50;
 | |
|    if(boost::is_floating_point<RealType>::value != 1)
 | |
|       tolerance *= 20; // real_concept special functions are less accurate
 | |
| 
 | |
|    std::cout << "Tolerance = " << tolerance << "%." << std::endl;
 | |
| 
 | |
|    using boost::math::chi_squared_distribution;
 | |
|    using  ::boost::math::chi_squared;
 | |
|    using  ::boost::math::cdf;
 | |
|    using  ::boost::math::pdf;
 | |
|    //
 | |
|    // Test against the data from Table 6 of:
 | |
|    //
 | |
|    // "Self-Validating Computations of Probabilities for Selected 
 | |
|    // Central and Noncentral Univariate Probability Functions."
 | |
|    // Morgan C. Wang; William J. Kennedy
 | |
|    // Journal of the American Statistical Association, 
 | |
|    // Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
 | |
|    //
 | |
|    test_spot(
 | |
|       static_cast<RealType>(1),   // degrees of freedom
 | |
|       static_cast<RealType>(6),   // non centrality
 | |
|       static_cast<RealType>(0.00393),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.2498463724258039e-2),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.2498463724258039e-2),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(5),   // degrees of freedom
 | |
|       static_cast<RealType>(1),   // non centrality
 | |
|       static_cast<RealType>(9.23636),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.8272918751175548),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.8272918751175548),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(11),   // degrees of freedom
 | |
|       static_cast<RealType>(21),   // non centrality
 | |
|       static_cast<RealType>(24.72497),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.2539481822183126),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.2539481822183126),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(31),   // degrees of freedom
 | |
|       static_cast<RealType>(6),   // non centrality
 | |
|       static_cast<RealType>(44.98534),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.8125198785064969),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.8125198785064969),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(51),   // degrees of freedom
 | |
|       static_cast<RealType>(1),   // non centrality
 | |
|       static_cast<RealType>(38.56038),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.8519497361859118e-1),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.8519497361859118e-1),           // Q = 1 - P
 | |
|       tolerance * 2);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(100),   // degrees of freedom
 | |
|       static_cast<RealType>(16),   // non centrality
 | |
|       static_cast<RealType>(82.35814),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.1184348822747824e-1),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.1184348822747824e-1),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(300),   // degrees of freedom
 | |
|       static_cast<RealType>(16),   // non centrality
 | |
|       static_cast<RealType>(331.78852),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.7355956710306709),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.7355956710306709),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(500),   // degrees of freedom
 | |
|       static_cast<RealType>(21),   // non centrality
 | |
|       static_cast<RealType>(459.92612),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.2797023600800060e-1),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.2797023600800060e-1),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(1),   // degrees of freedom
 | |
|       static_cast<RealType>(1),   // non centrality
 | |
|       static_cast<RealType>(0.00016),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.6121428929881423e-2),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.6121428929881423e-2),           // Q = 1 - P
 | |
|       tolerance);
 | |
|    test_spot(
 | |
|       static_cast<RealType>(1),   // degrees of freedom
 | |
|       static_cast<RealType>(1),   // non centrality
 | |
|       static_cast<RealType>(0.00393),   // Chi Squared statistic
 | |
|       static_cast<RealType>(0.3033814229753780e-1),       // Probability of result (CDF), P
 | |
|       static_cast<RealType>(1 - 0.3033814229753780e-1),           // Q = 1 - P
 | |
|       tolerance);
 | |
| 
 | |
|    RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
 | |
|    boost::math::non_central_chi_squared_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
 | |
|    RealType x = 7;
 | |
|    using namespace std; // ADL of std names.
 | |
|    // mean:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       mean(dist)
 | |
|       , static_cast<RealType>(8 + 12), tol2);
 | |
|    // variance:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       variance(dist)
 | |
|       , static_cast<RealType>(64), tol2);
 | |
|    // std deviation:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       standard_deviation(dist)
 | |
|       , static_cast<RealType>(8), tol2);
 | |
|    // hazard:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       hazard(dist, x)
 | |
|       , pdf(dist, x) / cdf(complement(dist, x)), tol2);
 | |
|    // cumulative hazard:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       chf(dist, x)
 | |
|       , -log(cdf(complement(dist, x))), tol2);
 | |
|    // coefficient_of_variation:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       coefficient_of_variation(dist)
 | |
|       , standard_deviation(dist) / mean(dist), tol2);
 | |
|    // mode:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       mode(dist)
 | |
|       , static_cast<RealType>(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500));
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       median(dist),
 | |
|       quantile(
 | |
|       boost::math::non_central_chi_squared_distribution<RealType>(
 | |
|       static_cast<RealType>(8),
 | |
|       static_cast<RealType>(12)),
 | |
|       static_cast<RealType>(0.5)), static_cast<RealType>(tol2));
 | |
|    // skewness:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       skewness(dist)
 | |
|       , static_cast<RealType>(0.6875), tol2);
 | |
|    // kurtosis:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       kurtosis(dist)
 | |
|       , static_cast<RealType>(3.65625), tol2);
 | |
|    // kurtosis excess:
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       kurtosis_excess(dist)
 | |
|       , static_cast<RealType>(0.65625), tol2);
 | |
| 
 | |
|    // Error handling checks:
 | |
|    check_out_of_range<boost::math::non_central_chi_squared_distribution<RealType> >(1, 1);
 | |
|    BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(0, 1), 0), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(-1, 1), 0), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(1, -1), 0), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), -1), std::domain_error);
 | |
|    BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), 2), std::domain_error);
 | |
| #endif
 | |
| } // template <class RealType>void test_spots(RealType)
 | |
| 
 | |
| template <class T>
 | |
| T nccs_cdf(T df, T nc, T x)
 | |
| {
 | |
|    return cdf(boost::math::non_central_chi_squared_distribution<T>(df, nc), x);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T nccs_ccdf(T df, T nc, T x)
 | |
| {
 | |
|    return cdf(complement(boost::math::non_central_chi_squared_distribution<T>(df, nc), x));
 | |
| }
 | |
| 
 | |
| template <typename Real, typename T>
 | |
| void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
 | |
| {
 | |
|    typedef typename T::value_type row_type;
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    std::cout << "Testing: " << test << std::endl;
 | |
| 
 | |
| #ifdef NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST
 | |
|    value_type(*fp1)(value_type, value_type, value_type) = NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST;
 | |
| #else
 | |
|    value_type(*fp1)(value_type, value_type, value_type) = nccs_cdf;
 | |
| #endif
 | |
|    boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST))
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(fp1, 0, 1, 2),
 | |
|       extract_result<Real>(3));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(),
 | |
|       type_name, "non central chi squared CDF", test);
 | |
| #endif
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST))
 | |
| #ifdef NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST
 | |
|    fp1 = NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST;
 | |
| #else
 | |
|    fp1 = nccs_ccdf;
 | |
| #endif
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(fp1, 0, 1, 2),
 | |
|       extract_result<Real>(4));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(),
 | |
|       type_name, "non central chi squared CDF complement", test);
 | |
| 
 | |
|    std::cout << std::endl;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename Real, typename T>
 | |
| void quantile_sanity_check(T& data, const char* type_name, const char* test)
 | |
| {
 | |
| #ifndef ERROR_REPORTING_MODE
 | |
|    typedef typename T::value_type row_type;
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    //
 | |
|    // Tests with type real_concept take rather too long to run, so
 | |
|    // for now we'll disable them:
 | |
|    //
 | |
|    if(!boost::is_floating_point<value_type>::value)
 | |
|       return;
 | |
| 
 | |
|    std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
 | |
| 
 | |
|    //
 | |
|    // These sanity checks test for a round trip accuracy of one half
 | |
|    // of the bits in T, unless T is type float, in which case we check
 | |
|    // for just one decimal digit.  The problem here is the sensitivity
 | |
|    // of the functions, not their accuracy.  This test data was generated
 | |
|    // for the forward functions, which means that when it is used as
 | |
|    // the input to the inverses then it is necessarily inexact.  This rounding
 | |
|    // of the input is what makes the data unsuitable for use as an accuracy check,
 | |
|    // and also demonstrates that you can't in general round-trip these functions.
 | |
|    // It is however a useful sanity check.
 | |
|    //
 | |
|    value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
 | |
|    if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
 | |
|       precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float
 | |
| 
 | |
|    for(unsigned i = 0; i < data.size(); ++i)
 | |
|    {
 | |
|       if(Real(data[i][3]) == 0)
 | |
|       {
 | |
|          BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
 | |
|       }
 | |
|       else if(data[i][3] < 0.9999f)
 | |
|       {
 | |
|          value_type p = quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
 | |
|          value_type pt = data[i][2];
 | |
|          BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
 | |
|       }
 | |
|       if(data[i][4] == 0)
 | |
|       {
 | |
|          BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
 | |
|       }
 | |
|       else if(data[i][4] < 0.9999f)
 | |
|       {
 | |
|          value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
 | |
|          value_type pt = data[i][2];
 | |
|          BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
 | |
|       }
 | |
|       if(boost::math::tools::digits<value_type>() > 50)
 | |
|       {
 | |
|          //
 | |
|          // Sanity check mode, the accuracy of
 | |
|          // the mode is at *best* the square root of the accuracy of the PDF:
 | |
|          //
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|          try{
 | |
|             value_type m = mode(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]));
 | |
|             value_type p = pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m);
 | |
|             BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i);
 | |
|             BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i);
 | |
|          }
 | |
|          catch(const boost::math::evaluation_error&) {}
 | |
| #endif
 | |
|          //
 | |
|          // Sanity check degrees-of-freedom finder, don't bother at float
 | |
|          // precision though as there's not enough data in the probability
 | |
|          // values to get back to the correct degrees of freedom or 
 | |
|          // non-cenrality parameter:
 | |
|          //
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|          try{
 | |
| #endif
 | |
|             if((data[i][3] < 0.99) && (data[i][3] != 0))
 | |
|             {
 | |
|                BOOST_CHECK_CLOSE_EX(
 | |
|                   boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
 | |
|                   data[i][0], precision, i);
 | |
|                BOOST_CHECK_CLOSE_EX(
 | |
|                   boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
 | |
|                   data[i][1], precision, i);
 | |
|             }
 | |
|             if((data[i][4] < 0.99) && (data[i][4] != 0))
 | |
|             {
 | |
|                BOOST_CHECK_CLOSE_EX(
 | |
|                   boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
 | |
|                   data[i][0], precision, i);
 | |
|                BOOST_CHECK_CLOSE_EX(
 | |
|                   boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
 | |
|                   data[i][1], precision, i);
 | |
|             }
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|          }
 | |
|          catch(const std::exception& e)
 | |
|          {
 | |
|             BOOST_ERROR(e.what());
 | |
|          }
 | |
| #endif
 | |
|       }
 | |
|    }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_accuracy(T, const char* type_name)
 | |
| {
 | |
| #include "nccs.ipp"
 | |
|    do_test_nc_chi_squared<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
 | |
|    quantile_sanity_check<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
 | |
| 
 | |
| #include "nccs_big.ipp"
 | |
|    do_test_nc_chi_squared<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
 | |
|    quantile_sanity_check<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
 | |
| }
 | |
| 
 |