mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			631 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			631 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2006.
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #include <boost/math/tools/test_data.hpp>
 | |
| #include <boost/test/included/prg_exec_monitor.hpp>
 | |
| #include <boost/math/special_functions/ellint_rj.hpp>
 | |
| #include <boost/math/special_functions/ellint_rd.hpp>
 | |
| #include <fstream>
 | |
| #include <boost/math/tools/test_data.hpp>
 | |
| #include <boost/random.hpp>
 | |
| #include "mp_t.hpp"
 | |
| 
 | |
| float extern_val;
 | |
| // confuse the compilers optimiser, and force a truncation to float precision:
 | |
| float truncate_to_float(float const * pf)
 | |
| {
 | |
|    extern_val = *pf;
 | |
|    return *pf;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Archived here is the original implementation of this
 | |
| // function by Xiaogang Zhang, we can use this to
 | |
| // generate special test cases for the new version:
 | |
| //
 | |
| template <typename T, typename Policy>
 | |
| T ellint_rj_old(T x, T y, T z, T p, const Policy& pol)
 | |
| {
 | |
|    T value, u, lambda, alpha, beta, sigma, factor, tolerance;
 | |
|    T X, Y, Z, P, EA, EB, EC, E2, E3, S1, S2, S3;
 | |
|    unsigned long k;
 | |
| 
 | |
|    BOOST_MATH_STD_USING
 | |
|       using namespace boost::math;
 | |
| 
 | |
|    static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)";
 | |
| 
 | |
|    if(x < 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument x must be non-negative, but got x = %1%", x, pol);
 | |
|    }
 | |
|    if(y < 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument y must be non-negative, but got y = %1%", y, pol);
 | |
|    }
 | |
|    if(z < 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument z must be non-negative, but got z = %1%", z, pol);
 | |
|    }
 | |
|    if(p == 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument p must not be zero, but got p = %1%", p, pol);
 | |
|    }
 | |
|    if(x + y == 0 || y + z == 0 || z + x == 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "At most one argument can be zero, "
 | |
|          "only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol);
 | |
|    }
 | |
| 
 | |
|    // error scales as the 6th power of tolerance
 | |
|    tolerance = pow(T(1) * tools::epsilon<T>() / 3, T(1) / 6);
 | |
| 
 | |
|    // for p < 0, the integral is singular, return Cauchy principal value
 | |
|    if(p < 0)
 | |
|    {
 | |
|       //
 | |
|       // We must ensure that (z - y) * (y - x) is positive.
 | |
|       // Since the integral is symmetrical in x, y and z
 | |
|       // we can just permute the values:
 | |
|       //
 | |
|       if(x > y)
 | |
|          std::swap(x, y);
 | |
|       if(y > z)
 | |
|          std::swap(y, z);
 | |
|       if(x > y)
 | |
|          std::swap(x, y);
 | |
| 
 | |
|       T q = -p;
 | |
|       T pmy = (z - y) * (y - x) / (y + q);  // p - y
 | |
| 
 | |
|       BOOST_ASSERT(pmy >= 0);
 | |
| 
 | |
|       p = pmy + y;
 | |
|       value = ellint_rj_old(x, y, z, p, pol);
 | |
|       value *= pmy;
 | |
|       value -= 3 * boost::math::ellint_rf(x, y, z, pol);
 | |
|       value += 3 * sqrt((x * y * z) / (x * z + p * q)) * boost::math::ellint_rc(x * z + p * q, p * q, pol);
 | |
|       value /= (y + q);
 | |
|       return value;
 | |
|    }
 | |
| 
 | |
|    // duplication
 | |
|    sigma = 0;
 | |
|    factor = 1;
 | |
|    k = 1;
 | |
|    do
 | |
|    {
 | |
|       u = (x + y + z + p + p) / 5;
 | |
|       X = (u - x) / u;
 | |
|       Y = (u - y) / u;
 | |
|       Z = (u - z) / u;
 | |
|       P = (u - p) / u;
 | |
| 
 | |
|       if((tools::max)(abs(X), abs(Y), abs(Z), abs(P)) < tolerance)
 | |
|          break;
 | |
| 
 | |
|       T sx = sqrt(x);
 | |
|       T sy = sqrt(y);
 | |
|       T sz = sqrt(z);
 | |
| 
 | |
|       lambda = sy * (sx + sz) + sz * sx;
 | |
|       alpha = p * (sx + sy + sz) + sx * sy * sz;
 | |
|       alpha *= alpha;
 | |
|       beta = p * (p + lambda) * (p + lambda);
 | |
|       sigma += factor * boost::math::ellint_rc(alpha, beta, pol);
 | |
|       factor /= 4;
 | |
|       x = (x + lambda) / 4;
 | |
|       y = (y + lambda) / 4;
 | |
|       z = (z + lambda) / 4;
 | |
|       p = (p + lambda) / 4;
 | |
|       ++k;
 | |
|    } while(k < policies::get_max_series_iterations<Policy>());
 | |
| 
 | |
|    // Check to see if we gave up too soon:
 | |
|    policies::check_series_iterations<T>(function, k, pol);
 | |
| 
 | |
|    // Taylor series expansion to the 5th order
 | |
|    EA = X * Y + Y * Z + Z * X;
 | |
|    EB = X * Y * Z;
 | |
|    EC = P * P;
 | |
|    E2 = EA - 3 * EC;
 | |
|    E3 = EB + 2 * P * (EA - EC);
 | |
|    S1 = 1 + E2 * (E2 * T(9) / 88 - E3 * T(9) / 52 - T(3) / 14);
 | |
|    S2 = EB * (T(1) / 6 + P * (T(-6) / 22 + P * T(3) / 26));
 | |
|    S3 = P * ((EA - EC) / 3 - P * EA * T(3) / 22);
 | |
|    value = 3 * sigma + factor * (S1 + S2 + S3) / (u * sqrt(u));
 | |
| 
 | |
|    return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T ellint_rd_imp_old(T x, T y, T z, const Policy& pol)
 | |
| {
 | |
|    T value, u, lambda, sigma, factor, tolerance;
 | |
|    T X, Y, Z, EA, EB, EC, ED, EE, S1, S2;
 | |
|    unsigned long k;
 | |
| 
 | |
|    BOOST_MATH_STD_USING
 | |
|    using namespace boost::math;
 | |
| 
 | |
|    static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
 | |
| 
 | |
|    if(x < 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument x must be >= 0, but got %1%", x, pol);
 | |
|    }
 | |
|    if(y < 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument y must be >= 0, but got %1%", y, pol);
 | |
|    }
 | |
|    if(z <= 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Argument z must be > 0, but got %1%", z, pol);
 | |
|    }
 | |
|    if(x + y == 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "At most one argument can be zero, but got, x + y = %1%", x + y, pol);
 | |
|    }
 | |
| 
 | |
|    // error scales as the 6th power of tolerance
 | |
|    tolerance = pow(tools::epsilon<T>() / 3, T(1) / 6);
 | |
| 
 | |
|    // duplication
 | |
|    sigma = 0;
 | |
|    factor = 1;
 | |
|    k = 1;
 | |
|    do
 | |
|    {
 | |
|       u = (x + y + z + z + z) / 5;
 | |
|       X = (u - x) / u;
 | |
|       Y = (u - y) / u;
 | |
|       Z = (u - z) / u;
 | |
|       if((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance)
 | |
|          break;
 | |
|       T sx = sqrt(x);
 | |
|       T sy = sqrt(y);
 | |
|       T sz = sqrt(z);
 | |
|       lambda = sy * (sx + sz) + sz * sx; //sqrt(x * y) + sqrt(y * z) + sqrt(z * x);
 | |
|       sigma += factor / (sz * (z + lambda));
 | |
|       factor /= 4;
 | |
|       x = (x + lambda) / 4;
 | |
|       y = (y + lambda) / 4;
 | |
|       z = (z + lambda) / 4;
 | |
|       ++k;
 | |
|    } while(k < policies::get_max_series_iterations<Policy>());
 | |
| 
 | |
|    // Check to see if we gave up too soon:
 | |
|    policies::check_series_iterations<T>(function, k, pol);
 | |
| 
 | |
|    // Taylor series expansion to the 5th order
 | |
|    EA = X * Y;
 | |
|    EB = Z * Z;
 | |
|    EC = EA - EB;
 | |
|    ED = EA - 6 * EB;
 | |
|    EE = ED + EC + EC;
 | |
|    S1 = ED * (ED * T(9) / 88 - Z * EE * T(9) / 52 - T(3) / 14);
 | |
|    S2 = Z * (EE / 6 + Z * (-EC * T(9) / 22 + Z * EA * T(3) / 26));
 | |
|    value = 3 * sigma + factor * (1 + S1 + S2) / (u * sqrt(u));
 | |
| 
 | |
|    return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T ellint_rf_imp_old(T x, T y, T z, const Policy& pol)
 | |
| {
 | |
|    T value, X, Y, Z, E2, E3, u, lambda, tolerance;
 | |
|    unsigned long k;
 | |
|    BOOST_MATH_STD_USING
 | |
|    using namespace boost::math;
 | |
|    static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)";
 | |
|    if(x < 0 || y < 0 || z < 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "domain error, all arguments must be non-negative, "
 | |
|          "only sensible result is %1%.",
 | |
|          std::numeric_limits<T>::quiet_NaN(), pol);
 | |
|    }
 | |
|    if(x + y == 0 || y + z == 0 || z + x == 0)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "domain error, at most one argument can be zero, "
 | |
|          "only sensible result is %1%.",
 | |
|          std::numeric_limits<T>::quiet_NaN(), pol);
 | |
|    }
 | |
|    // Carlson scales error as the 6th power of tolerance,
 | |
|    // but this seems not to work for types larger than
 | |
|    // 80-bit reals, this heuristic seems to work OK:
 | |
|    if(policies::digits<T, Policy>() > 64)
 | |
|    {
 | |
|       tolerance = pow(tools::epsilon<T>(), T(1) / 4.25f);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       tolerance = pow(4 * tools::epsilon<T>(), T(1) / 6);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
 | |
|    }
 | |
|    // duplication
 | |
|    k = 1;
 | |
|    do
 | |
|    {
 | |
|       u = (x + y + z) / 3;
 | |
|       X = (u - x) / u;
 | |
|       Y = (u - y) / u;
 | |
|       Z = (u - z) / u;
 | |
|       // Termination condition:
 | |
|       if((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance)
 | |
|          break;
 | |
|       T sx = sqrt(x);
 | |
|       T sy = sqrt(y);
 | |
|       T sz = sqrt(z);
 | |
|       lambda = sy * (sx + sz) + sz * sx;
 | |
|       x = (x + lambda) / 4;
 | |
|       y = (y + lambda) / 4;
 | |
|       z = (z + lambda) / 4;
 | |
|       ++k;
 | |
|    } while(k < policies::get_max_series_iterations<Policy>());
 | |
|    // Check to see if we gave up too soon:
 | |
|    policies::check_series_iterations<T>(function, k, pol);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(k);
 | |
|    // Taylor series expansion to the 5th order
 | |
|    E2 = X * Y - Z * Z;
 | |
|    E3 = X * Y * Z;
 | |
|    value = (1 + E2*(E2 / 24 - E3*T(3) / 44 - T(0.1)) + E3 / 14) / sqrt(u);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(value);
 | |
|    return value;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rj_data_4e(mp_t n)
 | |
| {
 | |
|    mp_t result = ellint_rj_old(n, n, n, n, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(n, n, n, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_3e(mp_t x, mp_t p)
 | |
| {
 | |
|    mp_t r = ellint_rj_old(x, x, x, p, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, x, x, p, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_1(mp_t x, mp_t y, mp_t p)
 | |
| {
 | |
|    mp_t r = ellint_rj_old(x, x, y, p, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, x, y, p, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_2(mp_t x, mp_t y, mp_t p)
 | |
| {
 | |
|    mp_t r = ellint_rj_old(x, y, x, p, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, y, x, p, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_3(mp_t x, mp_t y, mp_t p)
 | |
| {
 | |
|    mp_t r = ellint_rj_old(y, x, x, p, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(y, x, x, p, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_4(mp_t x, mp_t y, mp_t p)
 | |
| {
 | |
|    mp_t r = ellint_rj_old(x, y, p, p, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, y, p, p, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_1(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rd_imp_old(x, y, y, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, y, y, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_2(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rd_imp_old(x, x, y, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, x, y, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_3(mp_t x)
 | |
| {
 | |
|    mp_t r = ellint_rd_imp_old(mp_t(0), x, x, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(0, x, x, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_3e(mp_t x)
 | |
| {
 | |
|    mp_t r = ellint_rd_imp_old(x, x, x, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, x, x, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_0xy(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rd_imp_old(mp_t(0), x, y, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(mp_t(0), x, y, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xxx(mp_t x)
 | |
| {
 | |
|    mp_t r = ellint_rf_imp_old(x, x, x, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, x, x, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xyy(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rf_imp_old(x, y, y, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, y, y, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xxy(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rf_imp_old(x, x, y, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, x, y, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xyx(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rf_imp_old(x, y, x, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, y, x, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_0yy(mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rf_imp_old(mp_t(0), y, y, boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(mp_t(0), y, y, r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xy0(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t r = ellint_rf_imp_old(x, y, mp_t(0), boost::math::policies::policy<>());
 | |
|    return boost::math::make_tuple(x, y, mp_t(0), r);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data(mp_t n)
 | |
| {
 | |
|    static boost::mt19937 r;
 | |
|    boost::uniform_real<float> ur(0, 1);
 | |
|    boost::uniform_int<int> ui(-100, 100);
 | |
|    float x = ur(r);
 | |
|    x = ldexp(x, ui(r));
 | |
|    mp_t xr(truncate_to_float(&x));
 | |
|    float y = ur(r);
 | |
|    y = ldexp(y, ui(r));
 | |
|    mp_t yr(truncate_to_float(&y));
 | |
|    float z = ur(r);
 | |
|    z = ldexp(z, ui(r));
 | |
|    mp_t zr(truncate_to_float(&z));
 | |
| 
 | |
|    mp_t result = boost::math::ellint_rf(xr, yr, zr);
 | |
|    return boost::math::make_tuple(xr, yr, zr, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t> generate_rc_data(mp_t n)
 | |
| {
 | |
|    static boost::mt19937 r;
 | |
|    boost::uniform_real<float> ur(0, 1);
 | |
|    boost::uniform_int<int> ui(-100, 100);
 | |
|    float x = ur(r);
 | |
|    x = ldexp(x, ui(r));
 | |
|    mp_t xr(truncate_to_float(&x));
 | |
|    float y = ur(r);
 | |
|    y = ldexp(y, ui(r));
 | |
|    mp_t yr(truncate_to_float(&y));
 | |
| 
 | |
|    mp_t result = boost::math::ellint_rc(xr, yr);
 | |
|    return boost::math::make_tuple(xr, yr, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data(mp_t n)
 | |
| {
 | |
|    static boost::mt19937 r;
 | |
|    boost::uniform_real<float> ur(0, 1);
 | |
|    boost::uniform_real<float> nur(-1, 1);
 | |
|    boost::uniform_int<int> ui(-100, 100);
 | |
|    float x = ur(r);
 | |
|    x = ldexp(x, ui(r));
 | |
|    mp_t xr(truncate_to_float(&x));
 | |
|    float y = ur(r);
 | |
|    y = ldexp(y, ui(r));
 | |
|    mp_t yr(truncate_to_float(&y));
 | |
|    float z = ur(r);
 | |
|    z = ldexp(z, ui(r));
 | |
|    mp_t zr(truncate_to_float(&z));
 | |
|    float p = nur(r);
 | |
|    p = ldexp(p, ui(r));
 | |
|    mp_t pr(truncate_to_float(&p));
 | |
| 
 | |
|    boost::math::ellint_rj(x, y, z, p);
 | |
| 
 | |
|    mp_t result = boost::math::ellint_rj(xr, yr, zr, pr);
 | |
|    return boost::math::make_tuple(xr, yr, zr, pr, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data(mp_t n)
 | |
| {
 | |
|    static boost::mt19937 r;
 | |
|    boost::uniform_real<float> ur(0, 1);
 | |
|    boost::uniform_int<int> ui(-100, 100);
 | |
|    float x = ur(r);
 | |
|    x = ldexp(x, ui(r));
 | |
|    mp_t xr(truncate_to_float(&x));
 | |
|    float y = ur(r);
 | |
|    y = ldexp(y, ui(r));
 | |
|    mp_t yr(truncate_to_float(&y));
 | |
|    float z = ur(r);
 | |
|    z = ldexp(z, ui(r));
 | |
|    mp_t zr(truncate_to_float(&z));
 | |
| 
 | |
|    mp_t result = boost::math::ellint_rd(xr, yr, zr);
 | |
|    return boost::math::make_tuple(xr, yr, zr, result);
 | |
| }
 | |
| 
 | |
| mp_t rg_imp(mp_t x, mp_t y, mp_t z)
 | |
| {
 | |
|    using std::swap;
 | |
|    // If z is zero permute so the call to RD is valid:
 | |
|    if(z == 0)
 | |
|       swap(x, z);
 | |
|    return (z * ellint_rf_imp_old(x, y, z, boost::math::policies::policy<>())
 | |
|       - (x - z) * (y - z) * ellint_rd_imp_old(x, y, z, boost::math::policies::policy<>()) / 3
 | |
|       + sqrt(x * y / z)) / 2;
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_data(mp_t n)
 | |
| {
 | |
|    static boost::mt19937 r;
 | |
|    boost::uniform_real<float> ur(0, 1);
 | |
|    boost::uniform_int<int> ui(-100, 100);
 | |
|    float x = ur(r);
 | |
|    x = ldexp(x, ui(r));
 | |
|    mp_t xr(truncate_to_float(&x));
 | |
|    float y = ur(r);
 | |
|    y = ldexp(y, ui(r));
 | |
|    mp_t yr(truncate_to_float(&y));
 | |
|    float z = ur(r);
 | |
|    z = ldexp(z, ui(r));
 | |
|    mp_t zr(truncate_to_float(&z));
 | |
| 
 | |
|    mp_t result = rg_imp(xr, yr, zr);
 | |
|    return boost::math::make_tuple(xr, yr, zr, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xxx(mp_t x)
 | |
| {
 | |
|    mp_t result = rg_imp(x, x, x);
 | |
|    return boost::math::make_tuple(x, x, x, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xyy(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t result = rg_imp(x, y, y);
 | |
|    return boost::math::make_tuple(x, y, y, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xxy(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t result = rg_imp(x, x, y);
 | |
|    return boost::math::make_tuple(x, x, y, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xyx(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t result = rg_imp(x, y, x);
 | |
|    return boost::math::make_tuple(x, y, x, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_0xx(mp_t x)
 | |
| {
 | |
|    mp_t result = rg_imp(mp_t(0), x, x);
 | |
|    return boost::math::make_tuple(mp_t(0), x, x, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_x0x(mp_t x)
 | |
| {
 | |
|    mp_t result = rg_imp(x, mp_t(0), x);
 | |
|    return boost::math::make_tuple(x, mp_t(0), x, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xx0(mp_t x)
 | |
| {
 | |
|    mp_t result = rg_imp(x, x, mp_t(0));
 | |
|    return boost::math::make_tuple(x, x, mp_t(0), result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_00x(mp_t x)
 | |
| {
 | |
|    mp_t result = sqrt(x) / 2;
 | |
|    return boost::math::make_tuple(mp_t(0), mp_t(0), x, result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_0x0(mp_t x)
 | |
| {
 | |
|    mp_t result = sqrt(x) / 2;
 | |
|    return boost::math::make_tuple(mp_t(0), x, mp_t(0), result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_x00(mp_t x)
 | |
| {
 | |
|    mp_t result = sqrt(x) / 2;
 | |
|    return boost::math::make_tuple(x, mp_t(0), mp_t(0), result);
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xy0(mp_t x, mp_t y)
 | |
| {
 | |
|    mp_t result = rg_imp(x, y, mp_t(0));
 | |
|    return boost::math::make_tuple(x, y, mp_t(0), result);
 | |
| }
 | |
| 
 | |
| int cpp_main(int argc, char*argv[])
 | |
| {
 | |
|    using namespace boost::math::tools;
 | |
| 
 | |
|    parameter_info<mp_t> arg1, arg2, arg3;
 | |
|    test_data<mp_t> data;
 | |
| 
 | |
|    bool cont;
 | |
|    std::string line;
 | |
| 
 | |
|    if(argc < 1)
 | |
|       return 1;
 | |
| 
 | |
|    do{
 | |
| #if 0
 | |
|       int count;
 | |
|       std::cout << "Number of points: ";
 | |
|       std::cin >> count;
 | |
|       
 | |
|       arg1 = make_periodic_param(mp_t(0), mp_t(1), count);
 | |
|       arg1.type |= dummy_param;
 | |
| 
 | |
|       //
 | |
|       // Change this next line to get the R variant you want:
 | |
|       //
 | |
|       data.insert(&generate_rd_data, arg1);
 | |
| 
 | |
|       std::cout << "Any more data [y/n]?";
 | |
|       std::getline(std::cin, line);
 | |
|       boost::algorithm::trim(line);
 | |
|       cont = (line == "y");
 | |
| #else
 | |
|       get_user_parameter_info(arg1, "x");
 | |
|       get_user_parameter_info(arg2, "y");
 | |
|       //get_user_parameter_info(arg3, "p");
 | |
|       arg1.type |= dummy_param;
 | |
|       arg2.type |= dummy_param;
 | |
|       //arg3.type |= dummy_param;
 | |
|       data.insert(generate_rd_data_0xy, arg1, arg2);
 | |
| 
 | |
|       std::cout << "Any more data [y/n]?";
 | |
|       std::getline(std::cin, line);
 | |
|       boost::algorithm::trim(line);
 | |
|       cont = (line == "y");
 | |
| #endif
 | |
|    }while(cont);
 | |
| 
 | |
|    std::cout << "Enter name of test data file [default=ellint_rf_data.ipp]";
 | |
|    std::getline(std::cin, line);
 | |
|    boost::algorithm::trim(line);
 | |
|    if(line == "")
 | |
|       line = "ellint_rf_data.ipp";
 | |
|    std::ofstream ofs(line.c_str());
 | |
|    line.erase(line.find('.'));
 | |
|    ofs << std::scientific << std::setprecision(40);
 | |
|    write_code(ofs, data, line.c_str());
 | |
| 
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| 
 |