mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2006.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #include <boost/math/special_functions/gamma.hpp>
 | |
| #include <boost/math/special_functions/erf.hpp> // for inverses
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <fstream>
 | |
| #include <boost/math/tools/test_data.hpp>
 | |
| #include "mp_t.hpp"
 | |
| 
 | |
| using namespace boost::math::tools;
 | |
| using namespace std;
 | |
| 
 | |
| float external_f;
 | |
| float force_truncate(const float* f)
 | |
| {
 | |
|    external_f = *f;
 | |
|    return external_f;
 | |
| }
 | |
| 
 | |
| float truncate_to_float(mp_t r)
 | |
| {
 | |
|    float f = boost::math::tools::real_cast<float>(r);
 | |
|    return force_truncate(&f);
 | |
| }
 | |
| 
 | |
| struct erf_data_generator
 | |
| {
 | |
|    boost::math::tuple<mp_t, mp_t> operator()(mp_t z)
 | |
|    {
 | |
|       // very naively calculate spots using the gamma function at high precision:
 | |
|       int sign = 1;
 | |
|       if(z < 0)
 | |
|       {
 | |
|          sign = -1;
 | |
|          z = -z;
 | |
|       }
 | |
|       mp_t g1, g2;
 | |
|       g1 = boost::math::tgamma_lower(mp_t(0.5), z * z);
 | |
|       g1 /= sqrt(boost::math::constants::pi<mp_t>());
 | |
|       g1 *= sign;
 | |
| 
 | |
|       if(z < 0.5)
 | |
|       {
 | |
|          g2 = 1 - (sign * g1);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          g2 = boost::math::tgamma(mp_t(0.5), z * z);
 | |
|          g2 /= sqrt(boost::math::constants::pi<mp_t>());
 | |
|       }
 | |
|       if(sign < 1)
 | |
|          g2 = 2 - g2;
 | |
|       return boost::math::make_tuple(g1, g2);
 | |
|    }
 | |
| };
 | |
| 
 | |
| double double_factorial(int N)
 | |
| {
 | |
|    double result = 1;
 | |
|    while(N > 2)
 | |
|    {
 | |
|       N -= 2;
 | |
|       result *= N;
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| void asymptotic_limit(int Bits)
 | |
| {
 | |
|    //
 | |
|    // The following block of code estimates how large z has
 | |
|    // to be before we can use the asymptotic expansion for
 | |
|    // erf/erfc and still get convergence: the series becomes
 | |
|    // divergent eventually so we have to be careful!
 | |
|    //
 | |
|    double result = (std::numeric_limits<double>::max)();
 | |
|    int terms = 0;
 | |
|    for(int n = 1; n < 15; ++n)
 | |
|    {
 | |
|       double lim = (Bits-n) * log(2.0) - log(sqrt(3.14)) + log(double_factorial(2*n+1));
 | |
|       double x = 1;
 | |
|       while(x*x + (2*n+1)*log(x) <= lim)
 | |
|          x += 0.1;
 | |
|       if(x < result)
 | |
|       {
 | |
|          result = x;
 | |
|          terms = n;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    std::cout << "Erf asymptotic limit for " 
 | |
|       << Bits << " bit numbers is " 
 | |
|       << result << " after approximately " 
 | |
|       << terms << " terms." << std::endl;
 | |
| 
 | |
|    result = (std::numeric_limits<double>::max)();
 | |
|    terms = 0;
 | |
|    for(int n = 1; n < 30; ++n)
 | |
|    {
 | |
|       double x = pow(double_factorial(2*n+1)/pow(2.0, n-Bits), 1 / (2.0*n));
 | |
|       if(x < result)
 | |
|       {
 | |
|          result = x;
 | |
|          terms = n;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    std::cout << "Erfc asymptotic limit for " 
 | |
|       << Bits << " bit numbers is " 
 | |
|       << result << " after approximately " 
 | |
|       << terms << " terms." << std::endl;
 | |
| }
 | |
| 
 | |
| boost::math::tuple<mp_t, mp_t> erfc_inv(mp_t r)
 | |
| {
 | |
|    mp_t x = exp(-r * r);
 | |
|    x = x.convert_to<double>();
 | |
|    std::cout << x << "   ";
 | |
|    mp_t result = boost::math::erfc_inv(x);
 | |
|    std::cout << result << std::endl;
 | |
|    return boost::math::make_tuple(x, result);
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(int argc, char*argv [])
 | |
| {
 | |
|    parameter_info<mp_t> arg1;
 | |
|    test_data<mp_t> data;
 | |
| 
 | |
|    bool cont;
 | |
|    std::string line;
 | |
| 
 | |
|    if(argc >= 2)
 | |
|    {
 | |
|       if(strcmp(argv[1], "--limits") == 0)
 | |
|       {
 | |
|          asymptotic_limit(24);
 | |
|          asymptotic_limit(53);
 | |
|          asymptotic_limit(64);
 | |
|          asymptotic_limit(106);
 | |
|          asymptotic_limit(113);
 | |
|          return 0;
 | |
|       }
 | |
|       else if(strcmp(argv[1], "--erf_inv") == 0)
 | |
|       {
 | |
|          mp_t (*f)(mp_t);
 | |
|          f = boost::math::erf_inv;
 | |
|          std::cout << "Welcome.\n"
 | |
|             "This program will generate spot tests for the inverse erf function:\n";
 | |
|          std::cout << "Enter the number of data points: ";
 | |
|          int points;
 | |
|          std::cin >> points;
 | |
|          data.insert(f, make_random_param(mp_t(-1), mp_t(1), points));
 | |
|       }
 | |
|       else if(strcmp(argv[1], "--erfc_inv") == 0)
 | |
|       {
 | |
|          boost::math::tuple<mp_t, mp_t> (*f)(mp_t);
 | |
|          f = erfc_inv;
 | |
|          std::cout << "Welcome.\n"
 | |
|             "This program will generate spot tests for the inverse erfc function:\n";
 | |
|          std::cout << "Enter the maximum *result* expected from erfc_inv: ";
 | |
|          double max_val;
 | |
|          std::cin >> max_val;
 | |
|          std::cout << "Enter the number of data points: ";
 | |
|          int points;
 | |
|          std::cin >> points;
 | |
|          parameter_info<mp_t> arg = make_random_param(mp_t(0), mp_t(max_val), points);
 | |
|          arg.type |= dummy_param;
 | |
|          data.insert(f, arg);
 | |
|       }
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cout << "Welcome.\n"
 | |
|          "This program will generate spot tests for the erf and erfc functions:\n"
 | |
|          "  erf(z) and erfc(z)\n\n";
 | |
| 
 | |
|       do{
 | |
|          if(0 == get_user_parameter_info(arg1, "a"))
 | |
|             return 1;
 | |
|          data.insert(erf_data_generator(), arg1);
 | |
| 
 | |
|          std::cout << "Any more data [y/n]?";
 | |
|          std::getline(std::cin, line);
 | |
|          boost::algorithm::trim(line);
 | |
|          cont = (line == "y");
 | |
|       }while(cont);
 | |
|    }
 | |
| 
 | |
|    std::cout << "Enter name of test data file [default=erf_data.ipp]";
 | |
|    std::getline(std::cin, line);
 | |
|    boost::algorithm::trim(line);
 | |
|    if(line == "")
 | |
|       line = "erf_data.ipp";
 | |
|    std::ofstream ofs(line.c_str());
 | |
|    ofs << std::scientific << std::setprecision(40);
 | |
|    write_code(ofs, data, "erf_data");
 | |
|    
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| /* Output for asymptotic limits:
 | |
| 
 | |
| Erf asymptotic limit for 24 bit numbers is 2.8 after approximately 6 terms.
 | |
| Erfc asymptotic limit for 24 bit numbers is 4.12064 after approximately 17 terms.
 | |
| Erf asymptotic limit for 53 bit numbers is 4.3 after approximately 11 terms.
 | |
| Erfc asymptotic limit for 53 bit numbers is 6.19035 after approximately 29 terms.
 | |
| Erf asymptotic limit for 64 bit numbers is 4.8 after approximately 12 terms.
 | |
| Erfc asymptotic limit for 64 bit numbers is 7.06004 after approximately 29 terms.
 | |
| Erf asymptotic limit for 106 bit numbers is 6.5 after approximately 14 terms.
 | |
| Erfc asymptotic limit for 106 bit numbers is 11.6626 after approximately 29 terms.
 | |
| Erf asymptotic limit for 113 bit numbers is 6.8 after approximately 14 terms.
 | |
| Erfc asymptotic limit for 113 bit numbers is 12.6802 after approximately 29 terms.
 | |
| */
 | |
| 
 |