mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-24 17:40:26 -04:00 
			
		
		
		
	Groundwork for calling the decoders directly from C/C++ threads. To access the timer module timer_module must now be used. Instrumented code need only use the module function 'timer' which is now a procedure pointer that is guaranteed to be associated (unless null() is assigned to it, which should not be done). The default behaviour of 'timer' is to do nothing. If a Fortran program wishes to profile code it should now use the timer_impl module which contains a default timer implementation. The main program should call 'init_timer([filename])' before using 'timer' or calling routines that are instrumented. If 'init_timer([filename])'. If it is called then an optional file name may be provided with 'timer.out' being used as a default. The procedure 'fini_timer()' may be called to close the file. The default timer implementation is thread safe if used with OpenMP multi-threaded code so long as the OpenMP thread team is given the copyin(/timer_private/) attribute for correct operation. The common block /timer_private/ should be included for OpenMP use by including the file 'timer_common.inc'. The module 'lib/timer_C_wrapper.f90' provides a Fortran wrapper along with 'init' and 'fini' subroutines which allow a C/C++ application to call timer instrumented Fortran code and for it to receive callbacks of 'timer()' subroutine invocations. No C/C++ timer implementation is provided at this stage. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			113 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| subroutine subtract65(dd,npts,f0,dt)
 | |
| 
 | |
| ! Subtract a jt65 signal
 | |
| !
 | |
| ! Measured signal  : dd(t)    = a(t)cos(2*pi*f0*t+theta(t))
 | |
| ! Reference signal : cref(t)  = exp( j*(2*pi*f0*t+phi(t)) )
 | |
| ! Complex amp      : cfilt(t) = LPF[ dd(t)*CONJG(cref(t)) ]
 | |
| ! Subtract         : dd(t)    = dd(t) - 2*REAL{cref*cfilt}
 | |
| 
 | |
|   use packjt
 | |
|   use timer_module, only: timer
 | |
| 
 | |
|   integer correct(63)
 | |
|   parameter (NMAX=60*12000) !Samples per 60 s
 | |
|   parameter (NFILT=1600)
 | |
|   real*4  dd(NMAX), window(-NFILT/2:NFILT/2)
 | |
|   complex cref,camp,cfilt,cw
 | |
|   integer nprc(126)
 | |
|   real*8 dphi,phi
 | |
|   logical first
 | |
|   data nprc/                                   &
 | |
|     1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,0, &
 | |
|     0,1,0,1,1,0,0,1,0,0,0,1,1,1,0,0,1,1,1,1, &
 | |
|     0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0,1,0,1,1, &
 | |
|     0,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,1, &
 | |
|     1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,0,1, &
 | |
|     0,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1, &
 | |
|     1,1,1,1,1,1/
 | |
|   data first/.true./
 | |
|   common/chansyms65/correct
 | |
|   common/heap1/cref(NMAX),camp(NMAX),cfilt(NMAX),cw(NMAX)
 | |
|   save first
 | |
| 
 | |
|   pi=4.0*atan(1.0)
 | |
| 
 | |
| ! Symbol duration is 4096/11025 s.
 | |
| ! Sample rate is 12000/s, so 12000*(4096/11025)=4458.23 samples/symbol.
 | |
| ! For now, call it 4458 samples/symbol. Over the message duration, we'll be off
 | |
| ! by about (4458.23-4458)*126=28.98 samples; 29 samples, or 0.7% of 1 symbol.
 | |
| ! Could eliminate accumulated error by injecting one extra sample every
 | |
| ! 5 or so symbols... Maybe try this later.
 | |
| 
 | |
|   nstart=dt*12000+1;
 | |
|   nsym=126
 | |
|   ns=4458 
 | |
|   nref=nsym*ns
 | |
|   nend=nstart+nref-1
 | |
|   phi=0.0
 | |
|   iref=1
 | |
|   ind=1
 | |
|   isym=1
 | |
|   call timer('subtr_1 ',0)
 | |
|   do k=1,nsym
 | |
|     if( nprc(k) .eq. 1 ) then
 | |
|         omega=2*pi*f0
 | |
|     else
 | |
|         omega=2*pi*(f0+2.6917*(correct(isym)+2))
 | |
|         isym=isym+1
 | |
|     endif
 | |
|     dphi=omega/12000.0
 | |
|     do i=1,ns
 | |
|         cref(ind)=cexp(cmplx(0.0,phi))
 | |
|         phi=modulo(phi+dphi,2*pi)
 | |
|         id=nstart-1+ind
 | |
|         if(id.ge.1) camp(ind)=dd(id)*conjg(cref(ind))
 | |
|         ind=ind+1
 | |
|      enddo
 | |
|   enddo
 | |
|   call timer('subtr_1 ',1)
 | |
| 
 | |
|   call timer('subtr_2 ',0)
 | |
| ! Smoothing filter: do the convolution by means of FFTs. Ignore end-around 
 | |
| ! cyclic effects for now.
 | |
| 
 | |
|   nfft=564480
 | |
| 
 | |
|   if(first) then
 | |
| ! Create and normalize the filter
 | |
|      sum=0.0
 | |
|      do j=-NFILT/2,NFILT/2
 | |
|         window(j)=cos(pi*j/NFILT)**2
 | |
|         sum=sum+window(j)
 | |
|      enddo
 | |
|      cw=0.
 | |
|      do i=-NFILT/2,NFILT/2
 | |
|         j=i+1
 | |
|         if(j.lt.1) j=j+nfft
 | |
|         cw(j)=window(i)/sum
 | |
|      enddo
 | |
|      call four2a(cw,nfft,1,-1,1)
 | |
|      first=.false.
 | |
|   endif
 | |
| 
 | |
|   nz=561708
 | |
|   cfilt(1:nz)=camp(1:nz)
 | |
|   cfilt(nz+1:nfft)=0.
 | |
|   call four2a(cfilt,nfft,1,-1,1)
 | |
|   fac=1.0/float(nfft)
 | |
|   cfilt(1:nfft)=fac*cfilt(1:nfft)*cw(1:nfft)
 | |
|   call four2a(cfilt,nfft,1,1,1)
 | |
|   call timer('subtr_2 ',1)
 | |
| 
 | |
| ! Subtract the reconstructed signal
 | |
|   call timer('subtr_3 ',0)
 | |
|   do i=1,nref
 | |
|      j=nstart+i-1
 | |
|      if(j.ge.1 .and. j.le.npts) dd(j)=dd(j)-2*REAL(cfilt(i)*cref(i))
 | |
|   enddo
 | |
|   call timer('subtr_3 ',1)
 | |
| 
 | |
|   return
 | |
| end subroutine subtract65 
 |