mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/WSJT/trunk@1 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			127 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Initialize a RS codec
 | |
|  *
 | |
|  * Copyright 2002 Phil Karn, KA9Q
 | |
|  * May be used under the terms of the GNU General Public License (GPL)
 | |
|  */
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #ifdef CCSDS
 | |
| #include "ccsds.h"
 | |
| #elif defined(BIGSYM)
 | |
| #include "int.h"
 | |
| #else
 | |
| #include "char.h"
 | |
| #endif
 | |
| 
 | |
| #define NULL ((void *)0)
 | |
| 
 | |
| void FREE_RS(void *p){
 | |
|   struct rs *rs = (struct rs *)p;
 | |
| 
 | |
|   free(rs->alpha_to);
 | |
|   free(rs->index_of);
 | |
|   free(rs->genpoly);
 | |
|   free(rs);
 | |
| }
 | |
| 
 | |
| /* Initialize a Reed-Solomon codec
 | |
|  * symsize = symbol size, bits (1-8)
 | |
|  * gfpoly = Field generator polynomial coefficients
 | |
|  * fcr = first root of RS code generator polynomial, index form
 | |
|  * prim = primitive element to generate polynomial roots
 | |
|  * nroots = RS code generator polynomial degree (number of roots)
 | |
|  * pad = padding bytes at front of shortened block
 | |
|  */
 | |
| void *INIT_RS(int symsize,int gfpoly,int fcr,int prim,
 | |
| 	int nroots,int pad){
 | |
|   struct rs *rs;
 | |
|   int i, j, sr,root,iprim;
 | |
| 
 | |
|   /* Check parameter ranges */
 | |
|   if(symsize < 0 || symsize > 8*sizeof(DTYPE))
 | |
|     return NULL; /* Need version with ints rather than chars */
 | |
| 
 | |
|   if(fcr < 0 || fcr >= (1<<symsize))
 | |
|     return NULL;
 | |
|   if(prim <= 0 || prim >= (1<<symsize))
 | |
|     return NULL;
 | |
|   if(nroots < 0 || nroots >= (1<<symsize))
 | |
|     return NULL; /* Can't have more roots than symbol values! */
 | |
|   if(pad < 0 || pad >= ((1<<symsize) -1 - nroots))
 | |
|     return NULL; /* Too much padding */
 | |
| 
 | |
|   rs = (struct rs *)calloc(1,sizeof(struct rs));
 | |
|   rs->mm = symsize;
 | |
|   rs->nn = (1<<symsize)-1;
 | |
|   rs->pad = pad;
 | |
| 
 | |
|   rs->alpha_to = (DTYPE *)malloc(sizeof(DTYPE)*(rs->nn+1));
 | |
|   if(rs->alpha_to == NULL){
 | |
|     free(rs);
 | |
|     return NULL;
 | |
|   }
 | |
|   rs->index_of = (DTYPE *)malloc(sizeof(DTYPE)*(rs->nn+1));
 | |
|   if(rs->index_of == NULL){
 | |
|     free(rs->alpha_to);
 | |
|     free(rs);
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   /* Generate Galois field lookup tables */
 | |
|   rs->index_of[0] = A0; /* log(zero) = -inf */
 | |
|   rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
 | |
|   sr = 1;
 | |
|   for(i=0;i<rs->nn;i++){
 | |
|     rs->index_of[sr] = i;
 | |
|     rs->alpha_to[i] = sr;
 | |
|     sr <<= 1;
 | |
|     if(sr & (1<<symsize))
 | |
|       sr ^= gfpoly;
 | |
|     sr &= rs->nn;
 | |
|   }
 | |
|   if(sr != 1){
 | |
|     /* field generator polynomial is not primitive! */
 | |
|     free(rs->alpha_to);
 | |
|     free(rs->index_of);
 | |
|     free(rs);
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   /* Form RS code generator polynomial from its roots */
 | |
|   rs->genpoly = (DTYPE *)malloc(sizeof(DTYPE)*(nroots+1));
 | |
|   if(rs->genpoly == NULL){
 | |
|     free(rs->alpha_to);
 | |
|     free(rs->index_of);
 | |
|     free(rs);
 | |
|     return NULL;
 | |
|   }
 | |
|   rs->fcr = fcr;
 | |
|   rs->prim = prim;
 | |
|   rs->nroots = nroots;
 | |
| 
 | |
|   /* Find prim-th root of 1, used in decoding */
 | |
|   for(iprim=1;(iprim % prim) != 0;iprim += rs->nn)
 | |
|     ;
 | |
|   rs->iprim = iprim / prim;
 | |
| 
 | |
|   rs->genpoly[0] = 1;
 | |
|   for (i = 0,root=fcr*prim; i < nroots; i++,root += prim) {
 | |
|     rs->genpoly[i+1] = 1;
 | |
| 
 | |
|     /* Multiply rs->genpoly[] by  @**(root + x) */
 | |
|     for (j = i; j > 0; j--){
 | |
|       if (rs->genpoly[j] != 0)
 | |
| 	rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)];
 | |
|       else
 | |
| 	rs->genpoly[j] = rs->genpoly[j-1];
 | |
|     }
 | |
|     /* rs->genpoly[0] can never be zero */
 | |
|     rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)];
 | |
|   }
 | |
|   /* convert rs->genpoly[] to index form for quicker encoding */
 | |
|   for (i = 0; i <= nroots; i++)
 | |
|     rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
 | |
| 
 | |
|   return rs;
 | |
| }
 |