mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright Paul A. 2007, 2010
 | 
						|
// Copyright John Maddock 2007
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
// Simple example of computing probabilities for a binomial random variable.
 | 
						|
// Replication of source nag_binomial_dist (g01bjc).
 | 
						|
 | 
						|
// Shows how to replace NAG C library calls by Boost Math Toolkit C++ calls.
 | 
						|
// Note that the default policy does not replicate the way that NAG
 | 
						|
// library calls handle 'bad' arguments, but you can define policies that do,
 | 
						|
// as well as other policies that may suit your application even better.
 | 
						|
// See the examples of changing default policies for details.
 | 
						|
 | 
						|
#include <boost/math/distributions/binomial.hpp>
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
  using std::cout; using std::endl; using std::ios; using std::showpoint;
 | 
						|
#include <iomanip>
 | 
						|
  using std::fixed; using std::setw;
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
  cout << "Using the binomial distribution to replicate a NAG library call." << endl;
 | 
						|
  using boost::math::binomial_distribution;
 | 
						|
 | 
						|
  // This replicates the computation of the examples of using nag-binomial_dist
 | 
						|
  // using g01bjc in section g01 Somple Calculations on Statistical Data.
 | 
						|
  // http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf
 | 
						|
  // Program results section 8.3 page 3.g01bjc.3
 | 
						|
    //8.2. Program Data
 | 
						|
    //g01bjc Example Program Data
 | 
						|
    //4 0.50 2 : n, p, k
 | 
						|
    //19 0.44 13
 | 
						|
    //100 0.75 67
 | 
						|
    //2000 0.33 700
 | 
						|
    //8.3. Program Results
 | 
						|
    //g01bjc Example Program Results
 | 
						|
    //n p k plek pgtk peqk
 | 
						|
    //4 0.500 2 0.68750 0.31250 0.37500
 | 
						|
    //19 0.440 13 0.99138 0.00862 0.01939
 | 
						|
    //100 0.750 67 0.04460 0.95540 0.01700
 | 
						|
    //2000 0.330 700 0.97251 0.02749 0.00312
 | 
						|
 | 
						|
  cout.setf(ios::showpoint); // Trailing zeros to show significant decimal digits.
 | 
						|
  cout.precision(5); // Might calculate this from trials in distribution?
 | 
						|
  cout << fixed;
 | 
						|
  //  Binomial distribution.
 | 
						|
 | 
						|
  // Note  that  cdf(dist, k) is equivalent to NAG library plek probability of <= k
 | 
						|
  // cdf(complement(dist, k)) is equivalent to NAG library pgtk probability of > k
 | 
						|
  //             pdf(dist, k) is equivalent to NAG library peqk probability of == k
 | 
						|
 | 
						|
  cout << " n        p     k     plek     pgtk     peqk " << endl;
 | 
						|
  binomial_distribution<>my_dist(4, 0.5);
 | 
						|
  cout << setw(4) << (int)my_dist.trials() << "  " << my_dist.success_fraction()
 | 
						|
  << "   " << 2 << "  " << cdf(my_dist, 2) << "  "
 | 
						|
  << cdf(complement(my_dist, 2)) << "  " << pdf(my_dist, 2) << endl;
 | 
						|
 | 
						|
  binomial_distribution<>two(19, 0.440);
 | 
						|
  cout << setw(4) << (int)two.trials() <<  "  "  << two.success_fraction()
 | 
						|
    << "  " << 13 << "  " << cdf(two, 13) << "  "
 | 
						|
    << cdf(complement(two, 13)) << "  " << pdf(two, 13) << endl;
 | 
						|
 | 
						|
  binomial_distribution<>three(100, 0.750);
 | 
						|
  cout << setw(4) << (int)three.trials() << "  " << three.success_fraction()
 | 
						|
    << "  " << 67 << "  " << cdf(three, 67) << "  " << cdf(complement(three, 67))
 | 
						|
    << "  " << pdf(three, 67) << endl;
 | 
						|
  binomial_distribution<>four(2000, 0.330);
 | 
						|
  cout << setw(4) << (int)four.trials() <<  "  "  << four.success_fraction()
 | 
						|
  << " " << 700 << "  "
 | 
						|
    << cdf(four, 700) << "  " << cdf(complement(four, 700))
 | 
						|
    << "  " << pdf(four, 700) << endl;
 | 
						|
 | 
						|
  return 0;
 | 
						|
} // int main()
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
Example of using the binomial distribution to replicate a NAG library call.
 | 
						|
 n        p     k     plek     pgtk     peqk
 | 
						|
   4  0.50000   2  0.68750  0.31250  0.37500
 | 
						|
  19  0.44000  13  0.99138  0.00862  0.01939
 | 
						|
 100  0.75000  67  0.04460  0.95540  0.01700
 | 
						|
2000  0.33000 700  0.97251  0.02749  0.00312
 | 
						|
 | 
						|
 | 
						|
 */
 | 
						|
 |