mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			214 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // Copyright Christopher Kormanyos 2013.
 | |
| // Copyright Paul A. Bristow 2013.
 | |
| // Copyright John Maddock 2013.
 | |
| 
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt or
 | |
| // copy at http://www.boost.org/LICENSE_1_0.txt).
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4512) // assignment operator could not be generated.
 | |
| #  pragma warning (disable : 4996) // assignment operator could not be generated.
 | |
| #endif
 | |
| 
 | |
| #include <iostream>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| #include <algorithm>
 | |
| #include <iomanip>
 | |
| #include <iterator>
 | |
| 
 | |
| // Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
 | |
| // http://mathworld.wolfram.com/BesselFunctionZeros.html
 | |
| // Test values can be calculated using [@wolframalpha.com WolframAplha]
 | |
| // See also http://dlmf.nist.gov/10.21
 | |
| 
 | |
| //[bessel_zeros_example_1
 | |
| 
 | |
| /*`This example demonstrates calculating zeros of the Bessel and Neumann functions.
 | |
| It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
 | |
| a many decimal digit precision. For 50 decimal digit precision we need to include
 | |
| */
 | |
| 
 | |
|   #include <boost/multiprecision/cpp_dec_float.hpp>
 | |
| 
 | |
| /*`and a `typedef` for `float_type` may be convenient
 | |
| (allowing a quick switch to re-compute at built-in `double` or other precision)
 | |
| */
 | |
|   typedef boost::multiprecision::cpp_dec_float_50 float_type;
 | |
| 
 | |
| //`To use the functions for finding zeros of the functions we need
 | |
| 
 | |
|   #include <boost/math/special_functions/bessel.hpp>
 | |
| 
 | |
| //`This file includes the forward declaration signatures for the zero-finding functions:
 | |
| 
 | |
| //  #include <boost/math/special_functions/math_fwd.hpp>
 | |
| 
 | |
| /*`but more details are in the full documentation, for example at
 | |
| [@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions].
 | |
| */
 | |
| 
 | |
| /*`This example shows obtaining both a single zero of the Bessel function,
 | |
| and then placing multiple zeros into a container like `std::vector` by providing an iterator.
 | |
| */
 | |
| //] [/bessel_zeros_example_1]
 | |
| 
 | |
| /*The signature of the single value function is:
 | |
| 
 | |
|   template <class T>
 | |
|   inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type
 | |
|     cyl_bessel_j_zero(
 | |
|            T v,      // Floating-point value for Jv.
 | |
|            int m);   // start index.
 | |
| 
 | |
| The result type is controlled by the floating-point type of parameter `v`
 | |
| (but subject to the usual __precision_policy and __promotion_policy).
 | |
| 
 | |
| The signature of multiple zeros function is:
 | |
| 
 | |
|   template <class T, class OutputIterator>
 | |
|   inline OutputIterator cyl_bessel_j_zero(
 | |
|                                 T v,                      // Floating-point value for Jv.
 | |
|                                 int start_index,          // 1-based start index.
 | |
|                                 unsigned number_of_zeros, // How many zeros to generate
 | |
|                                 OutputIterator out_it);   // Destination for zeros.
 | |
| 
 | |
| There is also a version which allows control of the __policy_section for error handling and precision.
 | |
| 
 | |
|   template <class T, class OutputIterator, class Policy>
 | |
|   inline OutputIterator cyl_bessel_j_zero(
 | |
|                                 T v,                      // Floating-point value for Jv.
 | |
|                                 int start_index,          // 1-based start index.
 | |
|                                 unsigned number_of_zeros, // How many zeros to generate
 | |
|                                 OutputIterator out_it,    // Destination for zeros.
 | |
|                                 const Policy& pol);       // Policy to use.
 | |
| */
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   try
 | |
|   {
 | |
| //[bessel_zeros_example_2
 | |
| 
 | |
| /*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
 | |
| this will ensure that helpful error messages are shown when exceptional conditions arise.]
 | |
| 
 | |
| First, evaluate a single Bessel zero.
 | |
| 
 | |
| The precision is controlled by the float-point type of template parameter `T` of `v`
 | |
| so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double).
 | |
| */
 | |
| //    double root = boost::math::cyl_bessel_j_zero(0.0, 1);
 | |
| //    // Displaying with default precision of 6 decimal digits:
 | |
| //    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
 | |
| //    // And with all the guaranteed (15) digits:
 | |
| //    std::cout.precision(std::numeric_limits<double>::digits10);
 | |
| //    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
 | |
| /*`But note that because the parameter `v` controls the precision of the result,
 | |
| `v` [*must be a floating-point type].
 | |
| So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus:
 | |
| ``
 | |
|     root = boost::math::cyl_bessel_j_zero(0, 1);
 | |
| ``
 | |
| with this error message
 | |
| ``
 | |
|   error C2338: Order must be a floating-point type.
 | |
| ``
 | |
| 
 | |
| Optionally, we can use a policy to ignore errors, C-style, returning some value,
 | |
| perhaps infinity or NaN, or the best that can be done. (See __user_error_handling).
 | |
| 
 | |
| To create a (possibly unwise!) policy `ignore_all_policy` that ignores all errors:
 | |
| */
 | |
| 
 | |
|   typedef boost::math::policies::policy<
 | |
|     boost::math::policies::domain_error<boost::math::policies::ignore_error>,
 | |
|     boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
 | |
|     boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
 | |
|     boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
 | |
|     boost::math::policies::pole_error<boost::math::policies::ignore_error>,
 | |
|     boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
 | |
|               > ignore_all_policy;
 | |
|  //`Examples of use of this `ignore_all_policy` are
 | |
| 
 | |
|     double inf = std::numeric_limits<double>::infinity();
 | |
|     double nan = std::numeric_limits<double>::quiet_NaN();
 | |
| 
 | |
|     double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 1, ignore_all_policy());
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
 | |
|     double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
 | |
|     double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN
 | |
| 
 | |
| /*`Another version of `cyl_bessel_j_zero`  allows calculation of multiple zeros with one call,
 | |
| placing the results in a container, often `std::vector`.
 | |
| For example, generate and display the first five `double` roots of J[sub v] for integral order 2,
 | |
| as column ['J[sub 2](x)] in table 1 of
 | |
| [@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].
 | |
| */
 | |
|     unsigned int n_roots = 5U;
 | |
|     std::vector<double> roots;
 | |
|     boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
 | |
|     std::copy(roots.begin(),
 | |
|               roots.end(),
 | |
|               std::ostream_iterator<double>(std::cout, "\n"));
 | |
| 
 | |
| /*`Or we can use Boost.Multiprecision to generate 50 decimal digit roots of ['J[sub v]]
 | |
| for non-integral order `v= 71/19 == 3.736842`, expressed as an exact-integer fraction
 | |
| to generate the most accurate value possible for all floating-point types.
 | |
| 
 | |
| We set the precision of the output stream, and show trailing zeros to display a fixed 50 decimal digits.
 | |
| */
 | |
|     std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
 | |
|     std::cout << std::showpoint << std::endl; // Show trailing zeros.
 | |
| 
 | |
|     float_type x = float_type(71) / 19;
 | |
|     float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
 | |
|     std::cout << "x = " << x << ", r = " << r << std::endl;
 | |
| 
 | |
|     r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
 | |
|     std::cout << "x = " << x << ", r = " << r << std::endl;
 | |
| 
 | |
|     std::vector<float_type> zeros;
 | |
|     boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));
 | |
| 
 | |
|     std::cout << "cyl_bessel_j_zeros" << std::endl;
 | |
|     // Print the roots to the output stream.
 | |
|     std::copy(zeros.begin(), zeros.end(),
 | |
|               std::ostream_iterator<float_type>(std::cout, "\n"));
 | |
| //] [/bessel_zeros_example_2]
 | |
|   }
 | |
|   catch (std::exception ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|  } // int main()
 | |
| 
 | |
|  /*
 | |
| 
 | |
|  Output:
 | |
| 
 | |
|    Description: Autorun "J:\Cpp\big_number\Debug\bessel_zeros_example_1.exe"
 | |
|   boost::math::cyl_bessel_j_zero(-1.0, 1) 3.83171
 | |
|   boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN
 | |
|   boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN
 | |
|   5.13562
 | |
|   8.41724
 | |
|   11.6198
 | |
|   14.796
 | |
|   17.9598
 | |
|   
 | |
|   x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623
 | |
|   x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458
 | |
|   cyl_bessel_j_zeros
 | |
|   7.2731751938316489503185694262290765588963196701623
 | |
|   10.724858308883141732536172745851416647110749599085
 | |
|   14.018504599452388106120459558042660282427471931581
 | |
| 
 | |
| */
 | |
| 
 |