mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			1580 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1580 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 This file is part of program wsprd, a detector/demodulator/decoder
 | 
						|
 for the Weak Signal Propagation Reporter (WSPR) mode.
 | 
						|
 
 | 
						|
 File name: wsprd.c
 | 
						|
 
 | 
						|
 Copyright 2001-2018, Joe Taylor, K1JT
 | 
						|
 
 | 
						|
 Much of the present code is based on work by Steven Franke, K9AN,
 | 
						|
 which in turn was based on earlier work by K1JT.
 | 
						|
 
 | 
						|
 Copyright 2014-2018, Steven Franke, K9AN
 | 
						|
 
 | 
						|
 License: GNU GPL v3
 | 
						|
 
 | 
						|
 This program is free software: you can redistribute it and/or modify
 | 
						|
 it under the terms of the GNU General Public License as published by
 | 
						|
 the Free Software Foundation, either version 3 of the License, or
 | 
						|
 (at your option) any later version.
 | 
						|
 
 | 
						|
 This program is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 GNU General Public License for more details.
 | 
						|
 
 | 
						|
 You should have received a copy of the GNU General Public License
 | 
						|
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <unistd.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <time.h>
 | 
						|
#include <fftw3.h>
 | 
						|
 | 
						|
#include "fano.h"
 | 
						|
#include "jelinek.h"
 | 
						|
#include "nhash.h"
 | 
						|
#include "wsprd_utils.h"
 | 
						|
#include "wsprsim_utils.h"
 | 
						|
 | 
						|
#define max(x,y) ((x) > (y) ? (x) : (y))
 | 
						|
 | 
						|
extern void osdwspr_ (float [], unsigned char [], int *, unsigned char [], int *, float *);
 | 
						|
 | 
						|
// Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT,
 | 
						|
// FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE
 | 
						|
#define PATIENCE FFTW_ESTIMATE
 | 
						|
fftwf_plan PLAN1,PLAN2,PLAN3;
 | 
						|
 | 
						|
unsigned char pr3[162]=
 | 
						|
{1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,
 | 
						|
    0,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,
 | 
						|
    0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,
 | 
						|
    1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,
 | 
						|
    0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,
 | 
						|
    0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,
 | 
						|
    0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,1,
 | 
						|
    0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
 | 
						|
    0,0};
 | 
						|
 | 
						|
int printdata=0;
 | 
						|
 | 
						|
//***************************************************************************
 | 
						|
unsigned long readc2file(char *ptr_to_infile, float *idat, float *qdat,
 | 
						|
                         double *freq, int *wspr_type)
 | 
						|
{
 | 
						|
    float *buffer;
 | 
						|
    double dfreq;
 | 
						|
    int i,ntrmin;
 | 
						|
    char c2file[15];
 | 
						|
    size_t nr;
 | 
						|
    FILE* fp;
 | 
						|
    
 | 
						|
    fp = fopen(ptr_to_infile,"rb");
 | 
						|
    if (fp == NULL) {
 | 
						|
        fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    nr=fread(c2file,sizeof(char),14,fp);
 | 
						|
    nr=fread(&ntrmin,sizeof(int),1,fp);
 | 
						|
    nr=fread(&dfreq,sizeof(double),1,fp);
 | 
						|
    *freq=dfreq;
 | 
						|
    
 | 
						|
    buffer=calloc(2*65536,sizeof(float));
 | 
						|
    nr=fread(buffer,sizeof(float),2*45000,fp);
 | 
						|
    fclose(fp);
 | 
						|
    
 | 
						|
    *wspr_type=ntrmin;
 | 
						|
    
 | 
						|
    for(i=0; i<45000; i++) {
 | 
						|
        idat[i]=buffer[2*i];
 | 
						|
        qdat[i]=-buffer[2*i+1];
 | 
						|
    }
 | 
						|
    free(buffer);
 | 
						|
    
 | 
						|
    if( nr == 2*45000 ) {
 | 
						|
        return (unsigned long) nr/2;
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//***************************************************************************
 | 
						|
unsigned long readwavfile(char *ptr_to_infile, int ntrmin, float *idat, float *qdat )
 | 
						|
{
 | 
						|
    size_t i, j, npoints, nr;
 | 
						|
    int nfft1, nfft2, nh2, i0;
 | 
						|
    double df;
 | 
						|
    
 | 
						|
    nfft2=46080; //this is the number of downsampled points that will be returned
 | 
						|
    nh2=nfft2/2;
 | 
						|
    
 | 
						|
    if( ntrmin == 2 ) {
 | 
						|
        nfft1=nfft2*32;      //need to downsample by a factor of 32
 | 
						|
        df=12000.0/nfft1;
 | 
						|
        i0=1500.0/df+0.5;
 | 
						|
        npoints=114*12000;
 | 
						|
    } else if ( ntrmin == 15 ) {
 | 
						|
        nfft1=nfft2*8*32;
 | 
						|
        df=12000.0/nfft1;
 | 
						|
        i0=(1500.0+112.5)/df+0.5;
 | 
						|
        npoints=8*114*12000;
 | 
						|
    } else {
 | 
						|
        fprintf(stderr,"This should not happen\n");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    float *realin;
 | 
						|
    fftwf_complex *fftin, *fftout;
 | 
						|
    
 | 
						|
    FILE *fp;
 | 
						|
    short int *buf2;
 | 
						|
    
 | 
						|
    fp = fopen(ptr_to_infile,"rb");
 | 
						|
    if (fp == NULL) {
 | 
						|
        fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    buf2 = calloc(npoints,sizeof(short int));
 | 
						|
    nr=fread(buf2,2,22,fp);      //Read and ignore header
 | 
						|
    nr=fread(buf2,2,npoints,fp); //Read raw data
 | 
						|
    fclose(fp);
 | 
						|
    if( nr == 0 ) {
 | 
						|
        fprintf(stderr, "No data in file '%s'\n", ptr_to_infile);
 | 
						|
        return 1;
 | 
						|
    }	
 | 
						|
    
 | 
						|
    realin=(float*) fftwf_malloc(sizeof(float)*nfft1);
 | 
						|
    fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*(nfft1/2+1));
 | 
						|
    PLAN1 = fftwf_plan_dft_r2c_1d(nfft1, realin, fftout, PATIENCE);
 | 
						|
    
 | 
						|
    for (i=0; i<npoints; i++) {
 | 
						|
        realin[i]=buf2[i]/32768.0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (i=npoints; i<(size_t)nfft1; i++) {
 | 
						|
        realin[i]=0.0;
 | 
						|
    }
 | 
						|
    free(buf2);
 | 
						|
    
 | 
						|
    fftwf_execute(PLAN1);
 | 
						|
    fftwf_free(realin);
 | 
						|
    
 | 
						|
    fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2);
 | 
						|
    
 | 
						|
    for (i=0; i<(size_t)nfft2; i++) {
 | 
						|
        j=i0+i;
 | 
						|
        if( i>(size_t)nh2 ) j=j-nfft2;
 | 
						|
        fftin[i][0]=fftout[j][0];
 | 
						|
        fftin[i][1]=fftout[j][1];
 | 
						|
    }
 | 
						|
    
 | 
						|
    fftwf_free(fftout);
 | 
						|
    fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2);
 | 
						|
    PLAN2 = fftwf_plan_dft_1d(nfft2, fftin, fftout, FFTW_BACKWARD, PATIENCE);
 | 
						|
    fftwf_execute(PLAN2);
 | 
						|
    
 | 
						|
    for (i=0; i<(size_t)nfft2; i++) {
 | 
						|
        idat[i]=fftout[i][0]/1000.0;
 | 
						|
        qdat[i]=fftout[i][1]/1000.0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    fftwf_free(fftin);
 | 
						|
    fftwf_free(fftout);
 | 
						|
    return nfft2;
 | 
						|
}
 | 
						|
 | 
						|
//***************************************************************************
 | 
						|
void sync_and_demodulate(float *id, float *qd, long np,
 | 
						|
                         unsigned char *symbols, float *f1, int ifmin, int ifmax, float fstep,
 | 
						|
                         int *shift1, int lagmin, int lagmax, int lagstep,
 | 
						|
                         float *drift1, int symfac, float *sync, int mode)
 | 
						|
{
 | 
						|
    /***********************************************************************
 | 
						|
     * mode = 0: no frequency or drift search. find best time lag.          *
 | 
						|
     *        1: no time lag or drift search. find best frequency.          *
 | 
						|
     *        2: no frequency or time lag search. calculate soft-decision   *
 | 
						|
     *           symbols using passed frequency and shift.                  *
 | 
						|
     ************************************************************************/
 | 
						|
    
 | 
						|
    static float fplast=-10000.0;
 | 
						|
    static float dt=1.0/375.0, df=375.0/256.0;
 | 
						|
    static float pi=3.14159265358979323846;
 | 
						|
    float twopidt, df15=df*1.5, df05=df*0.5;
 | 
						|
    
 | 
						|
    int i, j, k, lag;
 | 
						|
    float i0[162],q0[162],i1[162],q1[162],i2[162],q2[162],i3[162],q3[162];
 | 
						|
    float p0,p1,p2,p3,cmet,totp,syncmax,fac;
 | 
						|
    float c0[256],s0[256],c1[256],s1[256],c2[256],s2[256],c3[256],s3[256];
 | 
						|
    float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2,
 | 
						|
    dphi3, cdphi3, sdphi3;
 | 
						|
    float f0=0.0, fp, ss, fbest=0.0, fsum=0.0, f2sum=0.0, fsymb[162];
 | 
						|
    int best_shift = 0, ifreq;
 | 
						|
    
 | 
						|
    syncmax=-1e30;
 | 
						|
    if( mode == 0 ) {ifmin=0; ifmax=0; fstep=0.0; f0=*f1;}
 | 
						|
    if( mode == 1 ) {lagmin=*shift1;lagmax=*shift1;f0=*f1;}
 | 
						|
    if( mode == 2 ) {lagmin=*shift1;lagmax=*shift1;ifmin=0;ifmax=0;f0=*f1;}
 | 
						|
    
 | 
						|
    twopidt=2*pi*dt;
 | 
						|
    for(ifreq=ifmin; ifreq<=ifmax; ifreq++) {
 | 
						|
        f0=*f1+ifreq*fstep;
 | 
						|
        for(lag=lagmin; lag<=lagmax; lag=lag+lagstep) {
 | 
						|
            ss=0.0;
 | 
						|
            totp=0.0;
 | 
						|
            for (i=0; i<162; i++) {
 | 
						|
                fp = f0 + (*drift1/2.0)*((float)i-81.0)/81.0;
 | 
						|
                if( i==0 || (fp != fplast) ) {  // only calculate sin/cos if necessary
 | 
						|
                    dphi0=twopidt*(fp-df15);
 | 
						|
                    cdphi0=cos(dphi0);
 | 
						|
                    sdphi0=sin(dphi0);
 | 
						|
                    
 | 
						|
                    dphi1=twopidt*(fp-df05);
 | 
						|
                    cdphi1=cos(dphi1);
 | 
						|
                    sdphi1=sin(dphi1);
 | 
						|
                    
 | 
						|
                    dphi2=twopidt*(fp+df05);
 | 
						|
                    cdphi2=cos(dphi2);
 | 
						|
                    sdphi2=sin(dphi2);
 | 
						|
                    
 | 
						|
                    dphi3=twopidt*(fp+df15);
 | 
						|
                    cdphi3=cos(dphi3);
 | 
						|
                    sdphi3=sin(dphi3);
 | 
						|
                    
 | 
						|
                    c0[0]=1; s0[0]=0;
 | 
						|
                    c1[0]=1; s1[0]=0;
 | 
						|
                    c2[0]=1; s2[0]=0;
 | 
						|
                    c3[0]=1; s3[0]=0;
 | 
						|
                    
 | 
						|
                    for (j=1; j<256; j++) {
 | 
						|
                        c0[j]=c0[j-1]*cdphi0 - s0[j-1]*sdphi0;
 | 
						|
                        s0[j]=c0[j-1]*sdphi0 + s0[j-1]*cdphi0;
 | 
						|
                        c1[j]=c1[j-1]*cdphi1 - s1[j-1]*sdphi1;
 | 
						|
                        s1[j]=c1[j-1]*sdphi1 + s1[j-1]*cdphi1;
 | 
						|
                        c2[j]=c2[j-1]*cdphi2 - s2[j-1]*sdphi2;
 | 
						|
                        s2[j]=c2[j-1]*sdphi2 + s2[j-1]*cdphi2;
 | 
						|
                        c3[j]=c3[j-1]*cdphi3 - s3[j-1]*sdphi3;
 | 
						|
                        s3[j]=c3[j-1]*sdphi3 + s3[j-1]*cdphi3;
 | 
						|
                    }
 | 
						|
                    fplast = fp;
 | 
						|
                }
 | 
						|
                
 | 
						|
                i0[i]=0.0; q0[i]=0.0;
 | 
						|
                i1[i]=0.0; q1[i]=0.0;
 | 
						|
                i2[i]=0.0; q2[i]=0.0;
 | 
						|
                i3[i]=0.0; q3[i]=0.0;
 | 
						|
                
 | 
						|
                for (j=0; j<256; j++) {
 | 
						|
                    k=lag+i*256+j;
 | 
						|
                    if( (k>0) && (k<np) ) {
 | 
						|
                        i0[i]=i0[i] + id[k]*c0[j] + qd[k]*s0[j];
 | 
						|
                        q0[i]=q0[i] - id[k]*s0[j] + qd[k]*c0[j];
 | 
						|
                        i1[i]=i1[i] + id[k]*c1[j] + qd[k]*s1[j];
 | 
						|
                        q1[i]=q1[i] - id[k]*s1[j] + qd[k]*c1[j];
 | 
						|
                        i2[i]=i2[i] + id[k]*c2[j] + qd[k]*s2[j];
 | 
						|
                        q2[i]=q2[i] - id[k]*s2[j] + qd[k]*c2[j];
 | 
						|
                        i3[i]=i3[i] + id[k]*c3[j] + qd[k]*s3[j];
 | 
						|
                        q3[i]=q3[i] - id[k]*s3[j] + qd[k]*c3[j];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                p0=i0[i]*i0[i] + q0[i]*q0[i];
 | 
						|
                p1=i1[i]*i1[i] + q1[i]*q1[i];
 | 
						|
                p2=i2[i]*i2[i] + q2[i]*q2[i];
 | 
						|
                p3=i3[i]*i3[i] + q3[i]*q3[i];
 | 
						|
                
 | 
						|
                p0=sqrt(p0);
 | 
						|
                p1=sqrt(p1);
 | 
						|
                p2=sqrt(p2);
 | 
						|
                p3=sqrt(p3);
 | 
						|
                
 | 
						|
                totp=totp+p0+p1+p2+p3;
 | 
						|
                cmet=(p1+p3)-(p0+p2);
 | 
						|
                ss = (pr3[i] == 1) ? ss+cmet : ss-cmet;
 | 
						|
                if( mode == 2) {                 //Compute soft symbols
 | 
						|
                    if(pr3[i]==1) {
 | 
						|
                        fsymb[i]=p3-p1;
 | 
						|
                    } else {
 | 
						|
                        fsymb[i]=p2-p0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            ss=ss/totp;
 | 
						|
            if( ss > syncmax ) {          //Save best parameters
 | 
						|
                syncmax=ss;
 | 
						|
                best_shift=lag;
 | 
						|
                fbest=f0;
 | 
						|
            }
 | 
						|
        } // lag loop
 | 
						|
    } //freq loop
 | 
						|
    
 | 
						|
    if( mode <=1 ) {                       //Send best params back to caller
 | 
						|
        *sync=syncmax;
 | 
						|
        *shift1=best_shift;
 | 
						|
        *f1=fbest;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if( mode == 2 ) {
 | 
						|
        *sync=syncmax;
 | 
						|
        for (i=0; i<162; i++) {              //Normalize the soft symbols
 | 
						|
            fsum=fsum+fsymb[i]/162.0;
 | 
						|
            f2sum=f2sum+fsymb[i]*fsymb[i]/162.0;
 | 
						|
        }
 | 
						|
        fac=sqrt(f2sum-fsum*fsum);
 | 
						|
        for (i=0; i<162; i++) {
 | 
						|
            fsymb[i]=symfac*fsymb[i]/fac;
 | 
						|
            if( fsymb[i] > 127) fsymb[i]=127.0;
 | 
						|
            if( fsymb[i] < -128 ) fsymb[i]=-128.0;
 | 
						|
            symbols[i]=fsymb[i] + 128;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
void noncoherent_sequence_detection(float *id, float *qd, long np,
 | 
						|
                                    unsigned char *symbols, float *f1,  int *shift1,
 | 
						|
                                    float *drift1, int symfac, int *nblocksize, int *bitmetric)
 | 
						|
{
 | 
						|
    /************************************************************************
 | 
						|
     *  Noncoherent sequence detection for wspr.                            *
 | 
						|
     *  Allowed block lengths are nblock=1,2,3,6, or 9 symbols.             *
 | 
						|
     *  Longer block lengths require longer channel coherence time.         *
 | 
						|
     *  The whole block is estimated at once.                               *
 | 
						|
     *  nblock=1 corresponds to noncoherent detection of individual symbols *
 | 
						|
     *     like the original wsprd symbol demodulator.                      *
 | 
						|
     ************************************************************************/
 | 
						|
    static float fplast=-10000.0;
 | 
						|
    static float dt=1.0/375.0, df=375.0/256.0;
 | 
						|
    static float pi=3.14159265358979323846;
 | 
						|
    float twopidt, df15=df*1.5, df05=df*0.5;
 | 
						|
    
 | 
						|
    int i, j, k, lag, itone, ib, b, nblock, nseq, imask;
 | 
						|
    float xi[512],xq[512];
 | 
						|
    float is[4][162],qs[4][162],cf[4][162],sf[4][162],cm,sm,cmp,smp;
 | 
						|
    float p[512],fac,xm1,xm0;
 | 
						|
    float c0[257],s0[257],c1[257],s1[257],c2[257],s2[257],c3[257],s3[257];
 | 
						|
    float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2,
 | 
						|
    dphi3, cdphi3, sdphi3;
 | 
						|
    float f0, fp, fsum=0.0, f2sum=0.0, fsymb[162];
 | 
						|
    
 | 
						|
    twopidt=2*pi*dt;
 | 
						|
    f0=*f1;
 | 
						|
    lag=*shift1;
 | 
						|
    nblock=*nblocksize;
 | 
						|
    nseq=1<<nblock;
 | 
						|
    int bitbybit=*bitmetric;
 | 
						|
    
 | 
						|
    for (i=0; i<162; i++) {
 | 
						|
        fp = f0 + (*drift1/2.0)*((float)i-81.0)/81.0;
 | 
						|
        if( i==0 || (fp != fplast) ) {  // only calculate sin/cos if necessary
 | 
						|
            dphi0=twopidt*(fp-df15);
 | 
						|
            cdphi0=cos(dphi0);
 | 
						|
            sdphi0=sin(dphi0);
 | 
						|
            
 | 
						|
            dphi1=twopidt*(fp-df05);
 | 
						|
            cdphi1=cos(dphi1);
 | 
						|
            sdphi1=sin(dphi1);
 | 
						|
            
 | 
						|
            dphi2=twopidt*(fp+df05);
 | 
						|
            cdphi2=cos(dphi2);
 | 
						|
            sdphi2=sin(dphi2);
 | 
						|
            
 | 
						|
            dphi3=twopidt*(fp+df15);
 | 
						|
            cdphi3=cos(dphi3);
 | 
						|
            sdphi3=sin(dphi3);
 | 
						|
            
 | 
						|
            c0[0]=1; s0[0]=0;
 | 
						|
            c1[0]=1; s1[0]=0;
 | 
						|
            c2[0]=1; s2[0]=0;
 | 
						|
            c3[0]=1; s3[0]=0;
 | 
						|
            
 | 
						|
            for (j=1; j<257; j++) {
 | 
						|
                c0[j]=c0[j-1]*cdphi0 - s0[j-1]*sdphi0;
 | 
						|
                s0[j]=c0[j-1]*sdphi0 + s0[j-1]*cdphi0;
 | 
						|
                c1[j]=c1[j-1]*cdphi1 - s1[j-1]*sdphi1;
 | 
						|
                s1[j]=c1[j-1]*sdphi1 + s1[j-1]*cdphi1;
 | 
						|
                c2[j]=c2[j-1]*cdphi2 - s2[j-1]*sdphi2;
 | 
						|
                s2[j]=c2[j-1]*sdphi2 + s2[j-1]*cdphi2;
 | 
						|
                c3[j]=c3[j-1]*cdphi3 - s3[j-1]*sdphi3;
 | 
						|
                s3[j]=c3[j-1]*sdphi3 + s3[j-1]*cdphi3;
 | 
						|
            }
 | 
						|
            
 | 
						|
            fplast = fp;
 | 
						|
        }
 | 
						|
        
 | 
						|
        cf[0][i]=c0[256]; sf[0][i]=s0[256];
 | 
						|
        cf[1][i]=c1[256]; sf[1][i]=s1[256];
 | 
						|
        cf[2][i]=c2[256]; sf[2][i]=s2[256];
 | 
						|
        cf[3][i]=c3[256]; sf[3][i]=s3[256];
 | 
						|
        
 | 
						|
        is[0][i]=0.0; qs[0][i]=0.0;
 | 
						|
        is[1][i]=0.0; qs[1][i]=0.0;
 | 
						|
        is[2][i]=0.0; qs[2][i]=0.0;
 | 
						|
        is[3][i]=0.0; qs[3][i]=0.0;
 | 
						|
        
 | 
						|
        for (j=0; j<256; j++) {
 | 
						|
            k=lag+i*256+j;
 | 
						|
            if( (k>0) && (k<np) ) {
 | 
						|
                is[0][i]=is[0][i] + id[k]*c0[j] + qd[k]*s0[j];
 | 
						|
                qs[0][i]=qs[0][i] - id[k]*s0[j] + qd[k]*c0[j];
 | 
						|
                is[1][i]=is[1][i] + id[k]*c1[j] + qd[k]*s1[j];
 | 
						|
                qs[1][i]=qs[1][i] - id[k]*s1[j] + qd[k]*c1[j];
 | 
						|
                is[2][i]=is[2][i] + id[k]*c2[j] + qd[k]*s2[j];
 | 
						|
                qs[2][i]=qs[2][i] - id[k]*s2[j] + qd[k]*c2[j];
 | 
						|
                is[3][i]=is[3][i] + id[k]*c3[j] + qd[k]*s3[j];
 | 
						|
                qs[3][i]=qs[3][i] - id[k]*s3[j] + qd[k]*c3[j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (i=0; i<162; i=i+nblock) {
 | 
						|
        for (j=0;j<nseq;j++) {
 | 
						|
            xi[j]=0.0; xq[j]=0.0;
 | 
						|
            cm=1; sm=0;
 | 
						|
            for (ib=0; ib<nblock; ib++) {
 | 
						|
                b=(j&(1<<(nblock-1-ib)))>>(nblock-1-ib);
 | 
						|
                itone=pr3[i+ib]+2*b;
 | 
						|
                xi[j]=xi[j]+is[itone][i+ib]*cm + qs[itone][i+ib]*sm;
 | 
						|
                xq[j]=xq[j]+qs[itone][i+ib]*cm - is[itone][i+ib]*sm;
 | 
						|
                cmp=cf[itone][i+ib]*cm - sf[itone][i+ib]*sm;
 | 
						|
                smp=sf[itone][i+ib]*cm + cf[itone][i+ib]*sm;
 | 
						|
                cm=cmp; sm=smp;
 | 
						|
            }
 | 
						|
            p[j]=xi[j]*xi[j]+xq[j]*xq[j];
 | 
						|
            p[j]=sqrt(p[j]);
 | 
						|
        }
 | 
						|
        for (ib=0; ib<nblock; ib++) {
 | 
						|
            imask=1<<(nblock-1-ib);
 | 
						|
            xm1=0.0; xm0=0.0;
 | 
						|
            for (j=0; j<nseq; j++) {
 | 
						|
                if((j & imask)!=0) {
 | 
						|
                    if(p[j] > xm1) xm1=p[j];
 | 
						|
                }
 | 
						|
                if((j & imask)==0) {
 | 
						|
                    if(p[j]>xm0) xm0=p[j];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            fsymb[i+ib]=xm1-xm0;
 | 
						|
            if( bitbybit == 1 ) {
 | 
						|
                fsymb[i+ib]=fsymb[i+ib]/(xm1 > xm0 ? xm1 : xm0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i=0; i<162; i++) {              //Normalize the soft symbols
 | 
						|
        fsum=fsum+fsymb[i]/162.0;
 | 
						|
        f2sum=f2sum+fsymb[i]*fsymb[i]/162.0;
 | 
						|
    }
 | 
						|
    fac=sqrt(f2sum-fsum*fsum);
 | 
						|
    for (i=0; i<162; i++) {
 | 
						|
        fsymb[i]=symfac*fsymb[i]/fac;
 | 
						|
        if( fsymb[i] > 127) fsymb[i]=127.0;
 | 
						|
        if( fsymb[i] < -128 ) fsymb[i]=-128.0;
 | 
						|
        symbols[i]=fsymb[i] + 128;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
/***************************************************************************
 | 
						|
 symbol-by-symbol signal subtraction
 | 
						|
 ****************************************************************************/
 | 
						|
void subtract_signal(float *id, float *qd, long np,
 | 
						|
                     float f0, int shift0, float drift0, unsigned char* channel_symbols)
 | 
						|
{
 | 
						|
    float dt=1.0/375.0, df=375.0/256.0;
 | 
						|
    int i, j, k;
 | 
						|
    float pi=4.*atan(1.0),twopidt, fp;
 | 
						|
    
 | 
						|
    float i0,q0;
 | 
						|
    float c0[256],s0[256];
 | 
						|
    float dphi, cdphi, sdphi;
 | 
						|
    
 | 
						|
    twopidt=2*pi*dt;
 | 
						|
    
 | 
						|
    for (i=0; i<162; i++) {
 | 
						|
        fp = f0 + ((float)drift0/2.0)*((float)i-81.0)/81.0;
 | 
						|
        
 | 
						|
        dphi=twopidt*(fp+((float)channel_symbols[i]-1.5)*df);
 | 
						|
        cdphi=cos(dphi);
 | 
						|
        sdphi=sin(dphi);
 | 
						|
        
 | 
						|
        c0[0]=1; s0[0]=0;
 | 
						|
        
 | 
						|
        for (j=1; j<256; j++) {
 | 
						|
            c0[j]=c0[j-1]*cdphi - s0[j-1]*sdphi;
 | 
						|
            s0[j]=c0[j-1]*sdphi + s0[j-1]*cdphi;
 | 
						|
        }
 | 
						|
        
 | 
						|
        i0=0.0; q0=0.0;
 | 
						|
        
 | 
						|
        for (j=0; j<256; j++) {
 | 
						|
            k=shift0+i*256+j;
 | 
						|
            if( (k>0) & (k<np) ) {
 | 
						|
                i0=i0 + id[k]*c0[j] + qd[k]*s0[j];
 | 
						|
                q0=q0 - id[k]*s0[j] + qd[k]*c0[j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        
 | 
						|
        // subtract the signal here.
 | 
						|
        
 | 
						|
        i0=i0/256.0; //will be wrong for partial symbols at the edges...
 | 
						|
        q0=q0/256.0;
 | 
						|
        
 | 
						|
        for (j=0; j<256; j++) {
 | 
						|
            k=shift0+i*256+j;
 | 
						|
            if( (k>0) & (k<np) ) {
 | 
						|
                id[k]=id[k]- (i0*c0[j] - q0*s0[j]);
 | 
						|
                qd[k]=qd[k]- (q0*c0[j] + i0*s0[j]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
}
 | 
						|
/******************************************************************************
 | 
						|
  Subtract the coherent component of a signal 
 | 
						|
 *******************************************************************************/
 | 
						|
void subtract_signal2(float *id, float *qd, long np,
 | 
						|
                      float f0, int shift0, float drift0, unsigned char* channel_symbols)
 | 
						|
{
 | 
						|
    float dt=1.0/375.0, df=375.0/256.0;
 | 
						|
    float pi=4.*atan(1.0), twopidt, phi=0, dphi, cs;
 | 
						|
    int i, j, k, ii, nsym=162, nspersym=256,  nfilt=360; //nfilt must be even number.
 | 
						|
    int nsig=nsym*nspersym;
 | 
						|
    int nc2=45000;
 | 
						|
    
 | 
						|
    float *refi, *refq, *ci, *cq, *cfi, *cfq;
 | 
						|
    
 | 
						|
    refi=calloc(nc2,sizeof(float));
 | 
						|
    refq=calloc(nc2,sizeof(float));
 | 
						|
    ci=calloc(nc2,sizeof(float));
 | 
						|
    cq=calloc(nc2,sizeof(float));
 | 
						|
    cfi=calloc(nc2,sizeof(float));
 | 
						|
    cfq=calloc(nc2,sizeof(float));
 | 
						|
    
 | 
						|
    twopidt=2.0*pi*dt;
 | 
						|
    
 | 
						|
    /******************************************************************************
 | 
						|
     Measured signal:                    s(t)=a(t)*exp( j*theta(t) )
 | 
						|
     Reference is:                       r(t) = exp( j*phi(t) )
 | 
						|
     Complex amplitude is estimated as:  c(t)=LPF[s(t)*conjugate(r(t))]
 | 
						|
     so c(t) has phase angle theta-phi
 | 
						|
     Multiply r(t) by c(t) and subtract from s(t), i.e. s'(t)=s(t)-c(t)r(t)
 | 
						|
     *******************************************************************************/
 | 
						|
    
 | 
						|
    // create reference wspr signal vector, centered on f0.
 | 
						|
    //
 | 
						|
    for (i=0; i<nsym; i++) {
 | 
						|
        
 | 
						|
        cs=(float)channel_symbols[i];
 | 
						|
        
 | 
						|
        dphi=twopidt*
 | 
						|
        (
 | 
						|
         f0 + (drift0/2.0)*((float)i-(float)nsym/2.0)/((float)nsym/2.0)
 | 
						|
         + (cs-1.5)*df
 | 
						|
         );
 | 
						|
        
 | 
						|
        for ( j=0; j<nspersym; j++ ) {
 | 
						|
            ii=nspersym*i+j;
 | 
						|
            refi[ii]=cos(phi); //cannot precompute sin/cos because dphi is changing
 | 
						|
            refq[ii]=sin(phi);
 | 
						|
            phi=phi+dphi;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    float w[nfilt], norm=0, partialsum[nfilt]; 
 | 
						|
    //lowpass filter and remove startup transient
 | 
						|
    for (i=0; i<nfilt; i++) partialsum[i]=0.0;
 | 
						|
    for (i=0; i<nfilt; i++) {
 | 
						|
        w[i]=sin(pi*(float)i/(float)(nfilt-1));
 | 
						|
        norm=norm+w[i];
 | 
						|
    }
 | 
						|
    for (i=0; i<nfilt; i++) {
 | 
						|
        w[i]=w[i]/norm;
 | 
						|
    }
 | 
						|
    for (i=1; i<nfilt; i++) {
 | 
						|
        partialsum[i]=partialsum[i-1]+w[i];
 | 
						|
    }
 | 
						|
 | 
						|
    // s(t) * conjugate(r(t))
 | 
						|
    // beginning of first symbol in reference signal is at i=0
 | 
						|
    // beginning of first symbol in received data is at shift0.
 | 
						|
    // filter transient lasts nfilt samples
 | 
						|
    // leave nfilt zeros as a pad at the beginning of the unfiltered reference signal
 | 
						|
    for (i=0; i<nsym*nspersym; i++) {
 | 
						|
        k=shift0+i;
 | 
						|
        if( (k>0) && (k<np) ) {
 | 
						|
            ci[i+nfilt] = id[k]*refi[i] + qd[k]*refq[i];
 | 
						|
            cq[i+nfilt] = qd[k]*refi[i] - id[k]*refq[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // LPF
 | 
						|
    for (i=nfilt/2; i<45000-nfilt/2; i++) {
 | 
						|
        cfi[i]=0.0; cfq[i]=0.0;
 | 
						|
        for (j=0; j<nfilt; j++) {
 | 
						|
            cfi[i]=cfi[i]+w[j]*ci[i-nfilt/2+j];
 | 
						|
            cfq[i]=cfq[i]+w[j]*cq[i-nfilt/2+j];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // subtract c(t)*r(t) here
 | 
						|
    // (ci+j*cq)(refi+j*refq)=(ci*refi-cq*refq)+j(ci*refq+cq*refi)
 | 
						|
    // beginning of first symbol in reference signal is at i=nfilt
 | 
						|
    // beginning of first symbol in received data is at shift0.
 | 
						|
    for (i=0; i<nsig; i++) {
 | 
						|
        if( i<nfilt/2 ) {        // take care of the end effect (LPF step response) here
 | 
						|
            norm=partialsum[nfilt/2+i];
 | 
						|
        } else if( i>(nsig-1-nfilt/2) ) {
 | 
						|
            norm=partialsum[nfilt/2+nsig-1-i];
 | 
						|
        } else {
 | 
						|
            norm=1.0;
 | 
						|
        }
 | 
						|
        k=shift0+i;
 | 
						|
        j=i+nfilt;
 | 
						|
        if( (k>0) && (k<np) ) {
 | 
						|
            id[k]=id[k] - (cfi[j]*refi[i]-cfq[j]*refq[i])/norm;
 | 
						|
            qd[k]=qd[k] - (cfi[j]*refq[i]+cfq[j]*refi[i])/norm;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    free(refi);
 | 
						|
    free(refq);
 | 
						|
    free(ci);
 | 
						|
    free(cq);
 | 
						|
    free(cfi);
 | 
						|
    free(cfq);
 | 
						|
    
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long writec2file(char *c2filename, int trmin, double freq
 | 
						|
                          , float *idat, float *qdat)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    float *buffer;
 | 
						|
    FILE *fp;
 | 
						|
    
 | 
						|
    fp = fopen(c2filename,"wb");
 | 
						|
    if( fp == NULL ) {
 | 
						|
        fprintf(stderr, "Could not open c2 file '%s'\n", c2filename);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    unsigned long nwrite = fwrite(c2filename,sizeof(char),14,fp);
 | 
						|
    nwrite = fwrite(&trmin, sizeof(int), 1, fp);
 | 
						|
    nwrite = fwrite(&freq, sizeof(double), 1, fp);
 | 
						|
    
 | 
						|
    buffer=calloc(2*45000,sizeof(float));
 | 
						|
    for(i=0; i<45000; i++) {
 | 
						|
        buffer[2*i]=idat[i];
 | 
						|
        buffer[2*i+1]=-qdat[i];
 | 
						|
    }
 | 
						|
    nwrite = fwrite(buffer, sizeof(float), 2*45000, fp);
 | 
						|
    free(buffer);
 | 
						|
    if( nwrite == 2*45000 ) {
 | 
						|
        return nwrite;
 | 
						|
    } else {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
unsigned int count_hard_errors( unsigned char *symbols, unsigned char *channel_symbols)
 | 
						|
{
 | 
						|
    int i,is;
 | 
						|
    unsigned char cw[162];
 | 
						|
    unsigned int nerrors;
 | 
						|
    for (i=0; i<162; i++) {
 | 
						|
        cw[i] = channel_symbols[i] >=2 ? 1:0;
 | 
						|
    }
 | 
						|
    deinterleave(cw);
 | 
						|
    nerrors=0;
 | 
						|
    for (i=0; i<162; i++) {
 | 
						|
        is = symbols[i] > 127 ? 1:0;
 | 
						|
        nerrors = nerrors + (is == cw[i] ? 0:1);
 | 
						|
    }
 | 
						|
    return nerrors;
 | 
						|
}
 | 
						|
 | 
						|
//***************************************************************************
 | 
						|
void usage(void)
 | 
						|
{
 | 
						|
    printf("Usage: wsprd [options...] infile\n");
 | 
						|
    printf("       infile must have suffix .wav or .c2\n");
 | 
						|
    printf("\n");
 | 
						|
    printf("Options:\n");
 | 
						|
    printf("       -a <path> path to writeable data files, default=\".\"\n");
 | 
						|
    printf("       -B disable block demodulation - use single-symbol noncoherent demod\n");
 | 
						|
    printf("       -c write .c2 file at the end of the first pass\n");
 | 
						|
    printf("       -C maximum number of decoder cycles per bit, default 10000\n");
 | 
						|
    printf("       -d deeper search. Slower, a few more decodes\n");
 | 
						|
    printf("       -e x (x is transceiver dial frequency error in Hz)\n");
 | 
						|
    printf("       -f x (x is transceiver dial frequency in MHz)\n");
 | 
						|
    printf("       -H do not use (or update) the hash table\n");
 | 
						|
    printf("       -J use the stack decoder instead of Fano decoder\n");
 | 
						|
    printf("       -m decode wspr-15 .wav file\n");
 | 
						|
    printf("       -o n (0<=n<=5), decoding depth for OSD, default is disabled\n");
 | 
						|
    printf("       -q quick mode - doesn't dig deep for weak signals\n");
 | 
						|
    printf("       -s single pass mode, no subtraction (same as original wsprd)\n");
 | 
						|
    printf("       -v verbose mode (shows dupes)\n");
 | 
						|
    printf("       -w wideband mode - decode signals within +/- 150 Hz of center\n");
 | 
						|
    printf("       -z x (x is fano metric table bias, default is 0.45)\n");
 | 
						|
}
 | 
						|
 | 
						|
//***************************************************************************
 | 
						|
int main(int argc, char *argv[])
 | 
						|
{
 | 
						|
    char cr[] = "(C) 2018, Steven Franke - K9AN";
 | 
						|
    (void)cr;
 | 
						|
    extern char *optarg;
 | 
						|
    extern int optind;
 | 
						|
    int i,j,k;
 | 
						|
    unsigned char *symbols, *decdata, *channel_symbols, *apmask, *cw;
 | 
						|
    signed char message[]={-9,13,-35,123,57,-39,64,0,0,0,0};
 | 
						|
    char *callsign, *grid,  *call_loc_pow;
 | 
						|
    char *ptr_to_infile,*ptr_to_infile_suffix;
 | 
						|
    char *data_dir=".";
 | 
						|
    char wisdom_fname[200],all_fname[200],spots_fname[200];
 | 
						|
    char timer_fname[200],hash_fname[200];
 | 
						|
    char uttime[5],date[7];
 | 
						|
    int c,delta,maxpts=65536,verbose=0,quickmode=0,more_candidates=0, stackdecoder=0;
 | 
						|
    int usehashtable=1,wspr_type=2, ipass, nblocksize;
 | 
						|
    int nhardmin,ihash;
 | 
						|
    int writec2=0,maxdrift;
 | 
						|
    int shift1, lagmin, lagmax, lagstep, ifmin, ifmax, not_decoded;
 | 
						|
    unsigned int nbits=81, stacksize=200000;
 | 
						|
    struct snode * stack=NULL;
 | 
						|
    unsigned int npoints, cycles, maxnp, metric;
 | 
						|
    float df=375.0/256.0/2;
 | 
						|
    float fsymbs[162];
 | 
						|
    float dt=1.0/375.0, dt_print;
 | 
						|
    double dialfreq_cmdline=0.0, dialfreq, freq_print;
 | 
						|
    double dialfreq_error=0.0;
 | 
						|
    float fmin=-110, fmax=110;
 | 
						|
    float f1, fstep, sync1, drift1;
 | 
						|
    float dmin;
 | 
						|
    float psavg[512];
 | 
						|
    float *idat, *qdat;
 | 
						|
    clock_t t0,t00;
 | 
						|
    float tfano=0.0,treadwav=0.0,tcandidates=0.0,tsync0=0.0;
 | 
						|
    float tsync1=0.0,tsync2=0.0,tosd=0.0,ttotal=0.0;
 | 
						|
    
 | 
						|
    struct cand { float freq; float snr; int shift; float drift; float sync; };
 | 
						|
    struct cand candidates[200];
 | 
						|
    
 | 
						|
    struct result { char date[7]; char time[5]; float sync; float snr;
 | 
						|
        float dt; double freq; char message[23]; float drift;
 | 
						|
        unsigned int cycles; int jitter; int blocksize; unsigned int metric;
 | 
						|
        int nhardmin; int ipass; int decodetype;};
 | 
						|
    struct result decodes[50];
 | 
						|
    
 | 
						|
    char *hashtab;
 | 
						|
    hashtab=calloc(32768*13,sizeof(char));
 | 
						|
    char *loctab;
 | 
						|
    loctab=calloc(32768*5,sizeof(char));
 | 
						|
    int nh;
 | 
						|
    symbols=calloc(nbits*2,sizeof(unsigned char));
 | 
						|
    apmask=calloc(162,sizeof(unsigned char));
 | 
						|
    cw=calloc(162,sizeof(unsigned char));
 | 
						|
    decdata=calloc(11,sizeof(unsigned char));
 | 
						|
    channel_symbols=calloc(nbits*2,sizeof(unsigned char));
 | 
						|
    callsign=calloc(13,sizeof(char));
 | 
						|
    grid=calloc(5,sizeof(char));
 | 
						|
    call_loc_pow=calloc(23,sizeof(char));
 | 
						|
    float allfreqs[100];
 | 
						|
    char allcalls[100][13];
 | 
						|
    for (i=0; i<100; i++) allfreqs[i]=0.0;
 | 
						|
    memset(allcalls,0,sizeof(char)*100*13);
 | 
						|
    
 | 
						|
    int uniques=0, noprint=0, ndecodes_pass=0;
 | 
						|
    
 | 
						|
    // Parameters used for performance-tuning:
 | 
						|
    unsigned int maxcycles=10000;            //Decoder timeout limit
 | 
						|
    float minsync1=0.10;                     //First sync limit
 | 
						|
    float minsync2=0.12;                     //Second sync limit
 | 
						|
    int iifac=8;                             //Step size in final DT peakup
 | 
						|
    int symfac=50;                           //Soft-symbol normalizing factor
 | 
						|
    int subtraction=1;
 | 
						|
    int npasses=3;
 | 
						|
    int ndepth=-1;                            //Depth for OSD
 | 
						|
    
 | 
						|
    float minrms=52.0 * (symfac/64.0);      //Final test for plausible decoding
 | 
						|
    delta=60;                                //Fano threshold step
 | 
						|
    float bias=0.45;                        //Fano metric bias (used for both Fano and stack algorithms)
 | 
						|
    
 | 
						|
    t00=clock();
 | 
						|
    fftwf_complex *fftin, *fftout;
 | 
						|
#include "./metric_tables.c"
 | 
						|
    
 | 
						|
    int mettab[2][256];
 | 
						|
    
 | 
						|
    idat=calloc(maxpts,sizeof(float));
 | 
						|
    qdat=calloc(maxpts,sizeof(float));
 | 
						|
    
 | 
						|
    while ( (c = getopt(argc, argv, "a:BcC:de:f:HJmo:qstwvz:")) !=-1 ) {
 | 
						|
        switch (c) {
 | 
						|
            case 'a':
 | 
						|
                data_dir = optarg;
 | 
						|
                break;
 | 
						|
            case 'B':
 | 
						|
                npasses=2;
 | 
						|
                break;
 | 
						|
            case 'c':
 | 
						|
                writec2=1;
 | 
						|
                break;
 | 
						|
            case 'C':
 | 
						|
                maxcycles=(unsigned int) strtoul(optarg,NULL,10);
 | 
						|
                break;
 | 
						|
            case 'd':
 | 
						|
                more_candidates=1;
 | 
						|
                break;
 | 
						|
            case 'e':
 | 
						|
                dialfreq_error = strtod(optarg,NULL);   // units of Hz
 | 
						|
                // dialfreq_error = dial reading - actual, correct frequency
 | 
						|
                break;
 | 
						|
            case 'f':
 | 
						|
                dialfreq_cmdline = strtod(optarg,NULL); // units of MHz
 | 
						|
                break;
 | 
						|
            case 'H':
 | 
						|
                usehashtable = 0;
 | 
						|
                break;
 | 
						|
            case 'J': //Stack (Jelinek) decoder, Fano decoder is the default
 | 
						|
                stackdecoder = 1;
 | 
						|
                break;
 | 
						|
            case 'm':  //15-minute wspr mode
 | 
						|
                wspr_type = 15;
 | 
						|
                break;
 | 
						|
            case 'o':  //use ordered-statistics-decoder
 | 
						|
                ndepth=(int) strtol(optarg,NULL,10);
 | 
						|
                break;
 | 
						|
            case 'q':  //no shift jittering
 | 
						|
                quickmode = 1;
 | 
						|
                break;
 | 
						|
            case 's':  //single pass mode
 | 
						|
                subtraction = 0;
 | 
						|
                npasses = 1;
 | 
						|
                break;
 | 
						|
            case 'v':
 | 
						|
                verbose = 1;
 | 
						|
                break;
 | 
						|
            case 'w':
 | 
						|
                fmin=-150.0;
 | 
						|
                fmax=150.0;
 | 
						|
                break;
 | 
						|
            case 'z':
 | 
						|
                bias=strtod(optarg,NULL); //fano metric bias (default is 0.45)
 | 
						|
                break;
 | 
						|
            case '?':
 | 
						|
                usage();
 | 
						|
                return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if( access(data_dir, R_OK | W_OK)) {
 | 
						|
      fprintf(stderr, "Error: inaccessible data directory: '%s'\n", data_dir);
 | 
						|
      usage();
 | 
						|
      return EXIT_FAILURE;
 | 
						|
    }
 | 
						|
 | 
						|
    if( optind+1 > argc) {
 | 
						|
        usage();
 | 
						|
        return 1;
 | 
						|
    } else {
 | 
						|
        ptr_to_infile=argv[optind];
 | 
						|
    }
 | 
						|
    
 | 
						|
    if( stackdecoder ) {
 | 
						|
        stack=calloc(stacksize,sizeof(struct snode));
 | 
						|
    }
 | 
						|
 | 
						|
    // setup metric table
 | 
						|
    for(i=0; i<256; i++) {
 | 
						|
        mettab[0][i]=round( 10*(metric_tables[2][i]-bias) );
 | 
						|
        mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) );
 | 
						|
    }
 | 
						|
    
 | 
						|
    FILE *fp_fftwf_wisdom_file, *fall_wspr, *fwsprd, *fhash, *ftimer;
 | 
						|
    strcpy(wisdom_fname,".");
 | 
						|
    strcpy(all_fname,".");
 | 
						|
    strcpy(spots_fname,".");
 | 
						|
    strcpy(timer_fname,".");
 | 
						|
    strcpy(hash_fname,".");
 | 
						|
    if(data_dir != NULL) {
 | 
						|
      strncpy(wisdom_fname,data_dir, sizeof wisdom_fname);
 | 
						|
      strncpy(all_fname,data_dir, sizeof all_fname);
 | 
						|
      strncpy(spots_fname,data_dir, sizeof spots_fname);
 | 
						|
      strncpy(timer_fname,data_dir, sizeof timer_fname);
 | 
						|
      strncpy(hash_fname,data_dir, sizeof hash_fname);
 | 
						|
    }
 | 
						|
    strncat(wisdom_fname,"/wspr_wisdom.dat",20);
 | 
						|
    strncat(all_fname,"/ALL_WSPR.TXT",20);
 | 
						|
    strncat(spots_fname,"/wspr_spots.txt",20);
 | 
						|
    strncat(timer_fname,"/wspr_timer.out",20);
 | 
						|
    strncat(hash_fname,"/hashtable.txt",20);
 | 
						|
    if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "r"))) {  //Open FFTW wisdom
 | 
						|
        fftwf_import_wisdom_from_file(fp_fftwf_wisdom_file);
 | 
						|
        fclose(fp_fftwf_wisdom_file);
 | 
						|
    }
 | 
						|
    
 | 
						|
    fall_wspr=fopen(all_fname,"a");
 | 
						|
    fwsprd=fopen(spots_fname,"w");
 | 
						|
    //  FILE *fdiag;
 | 
						|
    //  fdiag=fopen("wsprd_diag","a");
 | 
						|
    
 | 
						|
    if((ftimer=fopen(timer_fname,"r"))) {
 | 
						|
        //Accumulate timing data
 | 
						|
        int nr=fscanf(ftimer,"%f %f %f %f %f %f %f %f",
 | 
						|
               &treadwav,&tcandidates,&tsync0,&tsync1,&tsync2,&tfano,&tosd,&ttotal);
 | 
						|
        fclose(ftimer);
 | 
						|
        if(nr == 0) fprintf(stderr, "Empty timer file: '%s'\n", timer_fname);
 | 
						|
    }
 | 
						|
    ftimer=fopen(timer_fname,"w");
 | 
						|
    
 | 
						|
    if( strstr(ptr_to_infile,".wav") ) {
 | 
						|
        ptr_to_infile_suffix=strstr(ptr_to_infile,".wav");
 | 
						|
        
 | 
						|
        t0 = clock();
 | 
						|
        npoints=readwavfile(ptr_to_infile, wspr_type, idat, qdat);
 | 
						|
        treadwav += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
        
 | 
						|
        if( npoints == 1 ) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        dialfreq=dialfreq_cmdline - (dialfreq_error*1.0e-06);
 | 
						|
    } else if ( strstr(ptr_to_infile,".c2") !=0 )  {
 | 
						|
        ptr_to_infile_suffix=strstr(ptr_to_infile,".c2");
 | 
						|
        npoints=readc2file(ptr_to_infile, idat, qdat, &dialfreq, &wspr_type);
 | 
						|
        if( npoints == 1 ) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        dialfreq -= (dialfreq_error*1.0e-06);
 | 
						|
    } else {
 | 
						|
        printf("Error: Failed to open %s\n",ptr_to_infile);
 | 
						|
        printf("WSPR file must have suffix .wav or .c2\n");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Parse date and time from given filename
 | 
						|
    strncpy(date,ptr_to_infile_suffix-11,6);
 | 
						|
    strncpy(uttime,ptr_to_infile_suffix-4,4);
 | 
						|
    date[6]='\0';
 | 
						|
    uttime[4]='\0';
 | 
						|
    
 | 
						|
    // Do windowed ffts over 2 symbols, stepped by half symbols
 | 
						|
    int nffts=4*floor(npoints/512)-1;
 | 
						|
    fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
 | 
						|
    fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
 | 
						|
    PLAN3 = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE);
 | 
						|
    
 | 
						|
    float ps[512][nffts];
 | 
						|
    float w[512];
 | 
						|
    for(i=0; i<512; i++) {
 | 
						|
        w[i]=sin(0.006147931*i);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if( usehashtable ) {
 | 
						|
        char line[80], hcall[13], hgrid[5];
 | 
						|
        if( (fhash=fopen(hash_fname,"r+")) ) {
 | 
						|
            while (fgets(line, sizeof(line), fhash) != NULL) {
 | 
						|
                hgrid[0]='\0';
 | 
						|
                sscanf(line,"%d %s %s",&nh,hcall,hgrid);
 | 
						|
                strcpy(hashtab+nh*13,hcall);
 | 
						|
                if(strlen(hgrid)>0) strcpy(loctab+nh*5,hgrid);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            fhash=fopen(hash_fname,"w+");
 | 
						|
        }
 | 
						|
        fclose(fhash);
 | 
						|
    }
 | 
						|
    
 | 
						|
    //*************** main loop starts here *****************
 | 
						|
    for (ipass=0; ipass<npasses; ipass++) {
 | 
						|
        if(ipass==1 && ndecodes_pass == 0 && npasses>2) ipass=2;
 | 
						|
        if(ipass < 2) {
 | 
						|
            nblocksize=1;
 | 
						|
            maxdrift=4;
 | 
						|
            minsync2=0.12;
 | 
						|
        }
 | 
						|
        if(ipass == 2 ) {
 | 
						|
            nblocksize=4;  // try 3 blocksizes plus bitbybit normalization
 | 
						|
            maxdrift=0;    // no drift for smaller frequency estimator variance
 | 
						|
            minsync2=0.10;
 | 
						|
        }
 | 
						|
        ndecodes_pass=0;   // still needed?
 | 
						|
        
 | 
						|
        for (i=0; i<nffts; i++) {
 | 
						|
            for(j=0; j<512; j++ ) {
 | 
						|
                k=i*128+j;
 | 
						|
                fftin[j][0]=idat[k] * w[j];
 | 
						|
                fftin[j][1]=qdat[k] * w[j];
 | 
						|
            }
 | 
						|
            fftwf_execute(PLAN3);
 | 
						|
            for (j=0; j<512; j++ ) {
 | 
						|
                k=j+256;
 | 
						|
                if( k>511 )
 | 
						|
                    k=k-512;
 | 
						|
                ps[j][i]=fftout[k][0]*fftout[k][0]+fftout[k][1]*fftout[k][1];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Compute average spectrum
 | 
						|
        for (i=0; i<512; i++) psavg[i]=0.0;
 | 
						|
        for (i=0; i<nffts; i++) {
 | 
						|
            for (j=0; j<512; j++) {
 | 
						|
                psavg[j]=psavg[j]+ps[j][i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Smooth with 7-point window and limit spectrum to +/-150 Hz
 | 
						|
        int window[7]={1,1,1,1,1,1,1};
 | 
						|
        float smspec[411];
 | 
						|
        for (i=0; i<411; i++) {
 | 
						|
            smspec[i]=0.0;
 | 
						|
            for(j=-3; j<=3; j++) {
 | 
						|
                k=256-205+i+j;
 | 
						|
                smspec[i]=smspec[i]+window[j+3]*psavg[k];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Sort spectrum values, then pick off noise level as a percentile
 | 
						|
        float tmpsort[411];
 | 
						|
        for (j=0; j<411; j++) {
 | 
						|
            tmpsort[j]=smspec[j];
 | 
						|
        }
 | 
						|
        qsort(tmpsort, 411, sizeof(float), floatcomp);
 | 
						|
        
 | 
						|
        // Noise level of spectrum is estimated as 123/411= 30'th percentile
 | 
						|
        float noise_level = tmpsort[122];
 | 
						|
        
 | 
						|
        /* Renormalize spectrum so that (large) peaks represent an estimate of snr.
 | 
						|
         * We know from experience that threshold snr is near -7dB in wspr bandwidth,
 | 
						|
         * corresponding to -7-26.3=-33.3dB in 2500 Hz bandwidth.
 | 
						|
         * The corresponding threshold is -42.3 dB in 2500 Hz bandwidth for WSPR-15. */
 | 
						|
        
 | 
						|
        float min_snr, snr_scaling_factor;
 | 
						|
        min_snr = pow(10.0,-8.0/10.0); //this is min snr in wspr bw
 | 
						|
        if( wspr_type == 2 ) {
 | 
						|
            snr_scaling_factor=26.3;
 | 
						|
        } else {
 | 
						|
            snr_scaling_factor=35.3;
 | 
						|
        }
 | 
						|
        for (j=0; j<411; j++) {
 | 
						|
            smspec[j]=smspec[j]/noise_level - 1.0;
 | 
						|
            if( smspec[j] < min_snr) smspec[j]=0.1*min_snr;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Find all local maxima in smoothed spectrum.
 | 
						|
        for (i=0; i<200; i++) {
 | 
						|
            candidates[i].freq=0.0;
 | 
						|
            candidates[i].snr=0.0;
 | 
						|
            candidates[i].drift=0.0;
 | 
						|
            candidates[i].shift=0;
 | 
						|
            candidates[i].sync=0.0;
 | 
						|
        }
 | 
						|
        
 | 
						|
        int npk=0;
 | 
						|
        unsigned char candidate;
 | 
						|
        for(j=1; j<410; j++) {
 | 
						|
            candidate = (smspec[j]>smspec[j-1]) &&
 | 
						|
            (smspec[j]>smspec[j+1]) &&
 | 
						|
            (npk<200);
 | 
						|
            if ( candidate ) {
 | 
						|
                candidates[npk].freq = (j-205)*df;
 | 
						|
                candidates[npk].snr  = 10*log10(smspec[j])-snr_scaling_factor;
 | 
						|
                npk++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if( more_candidates ) {
 | 
						|
            for(j=0; j<411; j=j+3) {
 | 
						|
                candidate = (smspec[j]>min_snr) && (npk<200);
 | 
						|
                if ( candidate ) {
 | 
						|
                    candidates[npk].freq = (j-205)*df;
 | 
						|
                    candidates[npk].snr  = 10*log10(smspec[j])-snr_scaling_factor;
 | 
						|
                    npk++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Compute corrected fmin, fmax, accounting for dial frequency error
 | 
						|
        fmin += dialfreq_error;    // dialfreq_error is in units of Hz
 | 
						|
        fmax += dialfreq_error;
 | 
						|
        
 | 
						|
        // Don't waste time on signals outside of the range [fmin,fmax].
 | 
						|
        i=0;
 | 
						|
        for( j=0; j<npk; j++) {
 | 
						|
            if( candidates[j].freq >= fmin && candidates[j].freq <= fmax ) {
 | 
						|
                candidates[i]=candidates[j];
 | 
						|
                i++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        npk=i;
 | 
						|
        
 | 
						|
        // bubble sort on snr
 | 
						|
        int pass;
 | 
						|
        struct cand tmp;
 | 
						|
        for (pass = 1; pass <= npk - 1; pass++) {
 | 
						|
            for (k = 0; k < npk - pass ; k++) {
 | 
						|
                if (candidates[k].snr < candidates[k+1].snr) {
 | 
						|
                    tmp = candidates[k];
 | 
						|
                    candidates[k]=candidates[k+1];
 | 
						|
                    candidates[k+1] = tmp;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        t0=clock();
 | 
						|
        
 | 
						|
        /* Make coarse estimates of shift (DT), freq, and drift
 | 
						|
         
 | 
						|
         * Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative
 | 
						|
         to nominal start time, which is 2 seconds into the file
 | 
						|
         
 | 
						|
         * Calculates shift relative to the beginning of the file
 | 
						|
         
 | 
						|
         * Negative shifts mean that signal started before start of file
 | 
						|
         
 | 
						|
         * The program prints DT = shift-2 s
 | 
						|
         
 | 
						|
         * Shifts that cause sync vector to fall off of either end of the data
 | 
						|
         vector are accommodated by "partial decoding", such that missing
 | 
						|
         symbols produce a soft-decision symbol value of 128
 | 
						|
         
 | 
						|
         * The frequency drift model is linear, deviation of +/- drift/2 over the
 | 
						|
         span of 162 symbols, with deviation equal to 0 at the center of the
 | 
						|
         signal vector.
 | 
						|
         */
 | 
						|
        
 | 
						|
        int idrift,ifr,if0,ifd,k0;
 | 
						|
        int kindex;
 | 
						|
        float smax,ss,pow,p0,p1,p2,p3;
 | 
						|
        for(j=0; j<npk; j++) {                              //For each candidate...
 | 
						|
            smax=-1e30;
 | 
						|
            if0=candidates[j].freq/df+256;
 | 
						|
            for (ifr=if0-2; ifr<=if0+2; ifr++) {                      //Freq search
 | 
						|
                for( k0=-10; k0<22; k0++) {                             //Time search
 | 
						|
                    for (idrift=-maxdrift; idrift<=maxdrift; idrift++) {  //Drift search
 | 
						|
                        ss=0.0;
 | 
						|
                        pow=0.0;
 | 
						|
                        for (k=0; k<162; k++) {                             //Sum over symbols
 | 
						|
                            ifd=ifr+((float)k-81.0)/81.0*( (float)idrift )/(2.0*df);
 | 
						|
                            kindex=k0+2*k;
 | 
						|
                            if( kindex < nffts ) {
 | 
						|
                                p0=ps[ifd-3][kindex];
 | 
						|
                                p1=ps[ifd-1][kindex];
 | 
						|
                                p2=ps[ifd+1][kindex];
 | 
						|
                                p3=ps[ifd+3][kindex];
 | 
						|
                                
 | 
						|
                                p0=sqrt(p0);
 | 
						|
                                p1=sqrt(p1);
 | 
						|
                                p2=sqrt(p2);
 | 
						|
                                p3=sqrt(p3);
 | 
						|
                                
 | 
						|
                                ss=ss+(2*pr3[k]-1)*((p1+p3)-(p0+p2));
 | 
						|
                                pow=pow+p0+p1+p2+p3;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        sync1=ss/pow;
 | 
						|
                        if( sync1 > smax ) {                  //Save coarse parameters
 | 
						|
                            smax=sync1;
 | 
						|
                            candidates[j].shift=128*(k0+1);
 | 
						|
                            candidates[j].drift=idrift;
 | 
						|
                            candidates[j].freq=(ifr-256)*df;
 | 
						|
                            candidates[j].sync=sync1;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        tcandidates += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
        
 | 
						|
        /*
 | 
						|
         Refine the estimates of freq, shift using sync as a metric.
 | 
						|
         Sync is calculated such that it is a float taking values in the range
 | 
						|
         [0.0,1.0].
 | 
						|
         
 | 
						|
         Function sync_and_demodulate has three modes of operation
 | 
						|
         mode is the last argument:
 | 
						|
         
 | 
						|
         0 = no frequency or drift search. find best time lag.
 | 
						|
         1 = no time lag or drift search. find best frequency.
 | 
						|
         2 = no frequency or time lag search. Calculate soft-decision
 | 
						|
         symbols using passed frequency and shift.
 | 
						|
         
 | 
						|
         NB: best possibility for OpenMP may be here: several worker threads
 | 
						|
         could each work on one candidate at a time.
 | 
						|
         */
 | 
						|
        for (j=0; j<npk; j++) {
 | 
						|
            
 | 
						|
            f1=candidates[j].freq;
 | 
						|
            drift1=candidates[j].drift;
 | 
						|
            shift1=candidates[j].shift;
 | 
						|
            sync1=candidates[j].sync;
 | 
						|
            
 | 
						|
            // coarse-grid lag and freq search, then if sync>minsync1 continue
 | 
						|
            fstep=0.0; ifmin=0; ifmax=0;
 | 
						|
            lagmin=shift1-128;
 | 
						|
            lagmax=shift1+128;
 | 
						|
            lagstep=64;
 | 
						|
            t0 = clock();
 | 
						|
            sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
 | 
						|
                                lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
 | 
						|
            tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
            
 | 
						|
            fstep=0.25; ifmin=-2; ifmax=2;
 | 
						|
            t0 = clock();
 | 
						|
            sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
 | 
						|
                                lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
 | 
						|
            
 | 
						|
            if(ipass < 2) {
 | 
						|
                // refine drift estimate
 | 
						|
                fstep=0.0; ifmin=0; ifmax=0;
 | 
						|
                float driftp,driftm,syncp,syncm;
 | 
						|
                driftp=drift1+0.5;
 | 
						|
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
 | 
						|
                                    lagmin, lagmax, lagstep, &driftp, symfac, &syncp, 1);
 | 
						|
                
 | 
						|
                driftm=drift1-0.5;
 | 
						|
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
 | 
						|
                                    lagmin, lagmax, lagstep, &driftm, symfac, &syncm, 1);
 | 
						|
                
 | 
						|
                if(syncp>sync1) {
 | 
						|
                    drift1=driftp;
 | 
						|
                    sync1=syncp;
 | 
						|
                } else if (syncm>sync1) {
 | 
						|
                    drift1=driftm;
 | 
						|
                    sync1=syncm;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
            
 | 
						|
            // fine-grid lag and freq search
 | 
						|
            if( sync1 > minsync1 ) {
 | 
						|
                
 | 
						|
                lagmin=shift1-32; lagmax=shift1+32; lagstep=16;
 | 
						|
                t0 = clock();
 | 
						|
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
 | 
						|
                                    lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
 | 
						|
                tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
                
 | 
						|
                // fine search over frequency
 | 
						|
                fstep=0.05; ifmin=-2; ifmax=2;
 | 
						|
                t0 = clock();
 | 
						|
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
 | 
						|
                                    lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
 | 
						|
                tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
                
 | 
						|
                candidates[j].freq=f1;
 | 
						|
                candidates[j].shift=shift1;
 | 
						|
                candidates[j].drift=drift1;
 | 
						|
                candidates[j].sync=sync1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        int nwat=0; 
 | 
						|
        int idupe;
 | 
						|
        for ( j=0; j<npk; j++) {
 | 
						|
            idupe=0;
 | 
						|
            for (k=0;k<nwat;k++) {
 | 
						|
                if( fabsf(candidates[j].freq - candidates[k].freq) < 0.05  &&
 | 
						|
                   abs(candidates[j].shift - candidates[k].shift) < 16 ) {
 | 
						|
                    idupe=1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if( idupe == 1 ) {
 | 
						|
                if(candidates[j].sync > candidates[k].sync) candidates[k]=candidates[j];
 | 
						|
            } else if ( candidates[j].sync > minsync2 ) {
 | 
						|
                candidates[nwat]=candidates[j];
 | 
						|
                nwat++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        int idt, ii, jittered_shift;
 | 
						|
        float y,sq,rms;
 | 
						|
        int ib, blocksize, bitmetric;
 | 
						|
        int n1,n2,n3,nadd,nu,ntype;
 | 
						|
        int osd_decode;
 | 
						|
        for (j=0; j<nwat; j++) {
 | 
						|
            memset(symbols,0,sizeof(char)*nbits*2);
 | 
						|
            memset(callsign,0,sizeof(char)*13);
 | 
						|
            memset(grid,0,sizeof(char)*5);
 | 
						|
            memset(call_loc_pow,0,sizeof(char)*23);
 | 
						|
            f1=candidates[j].freq;
 | 
						|
            shift1=candidates[j].shift;
 | 
						|
            drift1=candidates[j].drift;
 | 
						|
            not_decoded=1;
 | 
						|
            osd_decode=0;
 | 
						|
            
 | 
						|
            ib=1;
 | 
						|
            while( ib <= nblocksize && not_decoded ) {
 | 
						|
                if (ib < 4) { blocksize=ib; bitmetric=0; }
 | 
						|
                if (ib == 4) { blocksize=1; bitmetric=1; }
 | 
						|
                
 | 
						|
                idt=0; ii=0;
 | 
						|
                while ( not_decoded && idt<=(128/iifac)) {
 | 
						|
                    ii=(idt+1)/2;
 | 
						|
                    if( idt%2 == 1 ) ii=-ii;
 | 
						|
                    ii=iifac*ii;
 | 
						|
                    jittered_shift=shift1+ii;
 | 
						|
                    nhardmin=0; dmin=0.0;
 | 
						|
                    
 | 
						|
                    // Get soft-decision symbols
 | 
						|
                    t0 = clock();
 | 
						|
                    noncoherent_sequence_detection(idat, qdat, npoints, symbols, &f1,
 | 
						|
                                                   &jittered_shift, &drift1, symfac, &blocksize, &bitmetric);
 | 
						|
                    tsync2 += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
                    
 | 
						|
                    sq=0.0;
 | 
						|
                    for(i=0; i<162; i++) {
 | 
						|
                        y=(float)symbols[i] - 128.0;
 | 
						|
                        sq += y*y;
 | 
						|
                    }
 | 
						|
                    rms=sqrt(sq/162.0);
 | 
						|
                    
 | 
						|
                    if(rms > minrms) {
 | 
						|
                        deinterleave(symbols);
 | 
						|
                        t0 = clock();
 | 
						|
                        
 | 
						|
                        if ( stack ) {
 | 
						|
                            not_decoded = jelinek(&metric, &cycles, decdata, symbols, nbits,
 | 
						|
                                                  stacksize, stack, mettab,maxcycles);
 | 
						|
                        } else {
 | 
						|
                            not_decoded = fano(&metric,&cycles,&maxnp,decdata,symbols,nbits,
 | 
						|
                                               mettab,delta,maxcycles);
 | 
						|
                        }
 | 
						|
                        
 | 
						|
                        tfano += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
                        
 | 
						|
                        if( (ndepth >= 0) && not_decoded ) {
 | 
						|
                            for(i=0; i<162; i++) {
 | 
						|
                                fsymbs[i]=symbols[i]-128.0;
 | 
						|
                            }
 | 
						|
                            t0 = clock();
 | 
						|
                            osdwspr_(fsymbs,apmask,&ndepth,cw,&nhardmin,&dmin);
 | 
						|
                            tosd += (float)(clock()-t0)/CLOCKS_PER_SEC;
 | 
						|
                            
 | 
						|
                            for(i=0; i<162; i++) {
 | 
						|
                                symbols[i]=255*cw[i];
 | 
						|
                            }
 | 
						|
                            fano(&metric,&cycles,&maxnp,decdata,symbols,nbits,
 | 
						|
                                 mettab,delta,maxcycles);
 | 
						|
                            for(i=0; i<11; i++) {
 | 
						|
                                if( decdata[i]>127 ) {
 | 
						|
                                    message[i]=decdata[i]-256;
 | 
						|
                                } else {
 | 
						|
                                    message[i]=decdata[i];
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                            unpack50(message,&n1,&n2);
 | 
						|
                            if( !unpackcall(n1,callsign) ) break;
 | 
						|
                            callsign[12]=0;
 | 
						|
                            if( !unpackgrid(n2, grid) ) break;
 | 
						|
                            grid[4]=0;
 | 
						|
                            ntype = (n2&127) - 64;
 | 
						|
                            int itype;
 | 
						|
                            if( (ntype >= 0) && (ntype <= 62) ) {
 | 
						|
                                nu = ntype%10;
 | 
						|
                                itype=1;
 | 
						|
                                if( !(nu == 0 || nu == 3 || nu == 7) ) {
 | 
						|
                                    nadd=nu;
 | 
						|
                                    if( nu > 3 ) nadd=nu-3;
 | 
						|
                                    if( nu > 7 ) nadd=nu-7;
 | 
						|
                                    n3=n2/128+32768*(nadd-1);
 | 
						|
                                    if( !unpackpfx(n3,callsign) ) {
 | 
						|
                                        break;
 | 
						|
                                    }
 | 
						|
                                    itype=2;
 | 
						|
                                }
 | 
						|
                                ihash=nhash(callsign,strlen(callsign),(uint32_t)146);
 | 
						|
                                if(strncmp(hashtab+ihash*13,callsign,13)==0) {
 | 
						|
                                    if( (itype==1 && strncmp(loctab+ihash*5,grid,5)==0) ||
 | 
						|
                                        (itype==2) ) {
 | 
						|
                                       not_decoded=0;
 | 
						|
                                       osd_decode =1;
 | 
						|
                                    } 
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        
 | 
						|
                    }
 | 
						|
                    idt++;
 | 
						|
                    if( quickmode ) break;
 | 
						|
                }
 | 
						|
                ib++;
 | 
						|
            }
 | 
						|
            
 | 
						|
            if( !not_decoded ) {
 | 
						|
                ndecodes_pass++;
 | 
						|
                
 | 
						|
                for(i=0; i<11; i++) {
 | 
						|
                    
 | 
						|
                    if( decdata[i]>127 ) {
 | 
						|
                        message[i]=decdata[i]-256;
 | 
						|
                    } else {
 | 
						|
                        message[i]=decdata[i];
 | 
						|
                    }
 | 
						|
                    
 | 
						|
                }
 | 
						|
                
 | 
						|
                // Unpack the decoded message, update the hashtable, apply
 | 
						|
                // sanity checks on grid and power, and return
 | 
						|
                // call_loc_pow string and also callsign (for de-duping).
 | 
						|
                noprint=unpk_(message,hashtab,loctab,call_loc_pow,callsign);
 | 
						|
                if( subtraction && !noprint ) {
 | 
						|
                    if( get_wspr_channel_symbols(call_loc_pow, hashtab, loctab, channel_symbols) ) {
 | 
						|
                        subtract_signal2(idat, qdat, npoints, f1, shift1, drift1, channel_symbols);
 | 
						|
                        if(!osd_decode) nhardmin=count_hard_errors(symbols,channel_symbols);
 | 
						|
                    } else {
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                
 | 
						|
                // Remove dupes (same callsign and freq within 4 Hz)
 | 
						|
                int dupe=0;
 | 
						|
                for (i=0; i<uniques; i++) {
 | 
						|
                    if(!strcmp(callsign,allcalls[i]) &&
 | 
						|
                       (fabs(f1-allfreqs[i]) <4.0)) dupe=1;
 | 
						|
                }
 | 
						|
                if( (verbose || !dupe) && !noprint) {
 | 
						|
                    strcpy(allcalls[uniques],callsign);
 | 
						|
                    allfreqs[uniques]=f1;
 | 
						|
                    uniques++;
 | 
						|
                    
 | 
						|
                    // Add an extra space at the end of each line so that wspr-x doesn't
 | 
						|
                    // truncate the power (TNX to DL8FCL!)
 | 
						|
                    
 | 
						|
                    if( wspr_type == 15 ) {
 | 
						|
                        freq_print=dialfreq+(1500+112.5+f1/8.0)/1e6;
 | 
						|
                        dt_print=shift1*8*dt-1.0;
 | 
						|
                    } else {
 | 
						|
                        freq_print=dialfreq+(1500+f1)/1e6;
 | 
						|
                        dt_print=shift1*dt-1.0;
 | 
						|
                    }
 | 
						|
                    
 | 
						|
                    strcpy(decodes[uniques-1].date,date);
 | 
						|
                    strcpy(decodes[uniques-1].time,uttime);
 | 
						|
                    decodes[uniques-1].sync=candidates[j].sync;
 | 
						|
                    decodes[uniques-1].snr=candidates[j].snr;
 | 
						|
                    decodes[uniques-1].dt=dt_print;
 | 
						|
                    decodes[uniques-1].freq=freq_print;
 | 
						|
                    strcpy(decodes[uniques-1].message,call_loc_pow);
 | 
						|
                    decodes[uniques-1].drift=drift1;
 | 
						|
                    decodes[uniques-1].cycles=cycles;
 | 
						|
                    decodes[uniques-1].jitter=ii;
 | 
						|
                    decodes[uniques-1].blocksize=blocksize+3*bitmetric;
 | 
						|
                    decodes[uniques-1].metric=metric;
 | 
						|
                    decodes[uniques-1].nhardmin=nhardmin;
 | 
						|
                    decodes[uniques-1].ipass=ipass;
 | 
						|
                    decodes[uniques-1].decodetype=osd_decode;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        if( ipass == 0 && writec2 ) {
 | 
						|
            char c2filename[15];
 | 
						|
            double carrierfreq=dialfreq;
 | 
						|
            int wsprtype=2;
 | 
						|
            strcpy(c2filename,"000000_0001.c2");
 | 
						|
            printf("Writing %s\n",c2filename);
 | 
						|
            writec2file(c2filename, wsprtype, carrierfreq, idat, qdat);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // sort the result in order of increasing frequency
 | 
						|
    struct result temp;
 | 
						|
    for (j = 1; j <= uniques - 1; j++) {
 | 
						|
        for (k = 0; k < uniques - j ; k++) {
 | 
						|
            if (decodes[k].freq > decodes[k+1].freq) {
 | 
						|
                temp = decodes[k];
 | 
						|
                decodes[k]=decodes[k+1];;
 | 
						|
                decodes[k+1] = temp;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (i=0; i<uniques; i++) {
 | 
						|
        printf("%4s %3.0f %4.1f %10.6f %2d  %-s \n",
 | 
						|
               decodes[i].time, decodes[i].snr,decodes[i].dt, decodes[i].freq,
 | 
						|
               (int)decodes[i].drift, decodes[i].message);
 | 
						|
        fprintf(fall_wspr,
 | 
						|
                "%6s %4s %3.0f %5.2f %11.7f  %-22s %2d %5.2f %2d %2d %4d %2d %3d %5u %5d\n",
 | 
						|
                decodes[i].date, decodes[i].time, decodes[i].snr,
 | 
						|
                decodes[i].dt, decodes[i].freq, decodes[i].message,
 | 
						|
                (int)decodes[i].drift, decodes[i].sync,
 | 
						|
                decodes[i].ipass+1,decodes[i].blocksize,decodes[i].jitter,
 | 
						|
                decodes[i].decodetype,decodes[i].nhardmin,decodes[i].cycles/81,
 | 
						|
                decodes[i].metric);
 | 
						|
        fprintf(fwsprd,
 | 
						|
                "%6s %4s %3d %3.0f %4.1f %10.6f  %-22s %2d %5u %4d\n",
 | 
						|
                decodes[i].date, decodes[i].time, (int)(10*decodes[i].sync),
 | 
						|
                decodes[i].snr, decodes[i].dt, decodes[i].freq,
 | 
						|
                decodes[i].message, (int)decodes[i].drift, decodes[i].cycles/81,
 | 
						|
                decodes[i].jitter);
 | 
						|
        
 | 
						|
    }
 | 
						|
    printf("<DecodeFinished>\n");
 | 
						|
    
 | 
						|
    fftwf_free(fftin);
 | 
						|
    fftwf_free(fftout);
 | 
						|
    
 | 
						|
    if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "w"))) {
 | 
						|
        fftwf_export_wisdom_to_file(fp_fftwf_wisdom_file);
 | 
						|
        fclose(fp_fftwf_wisdom_file);
 | 
						|
    }
 | 
						|
    
 | 
						|
    ttotal += (float)(clock()-t00)/CLOCKS_PER_SEC;
 | 
						|
    
 | 
						|
    fprintf(ftimer,"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n\n",
 | 
						|
            treadwav,tcandidates,tsync0,tsync1,tsync2,tfano,tosd,ttotal);
 | 
						|
    
 | 
						|
    fprintf(ftimer,"Code segment        Seconds   Frac\n");
 | 
						|
    fprintf(ftimer,"-----------------------------------\n");
 | 
						|
    fprintf(ftimer,"readwavfile        %7.2f %7.2f\n",treadwav,treadwav/ttotal);
 | 
						|
    fprintf(ftimer,"Coarse DT f0 f1    %7.2f %7.2f\n",tcandidates,
 | 
						|
            tcandidates/ttotal);
 | 
						|
    fprintf(ftimer,"sync_and_demod(0)  %7.2f %7.2f\n",tsync0,tsync0/ttotal);
 | 
						|
    fprintf(ftimer,"sync_and_demod(1)  %7.2f %7.2f\n",tsync1,tsync1/ttotal);
 | 
						|
    fprintf(ftimer,"sync_and_demod(2)  %7.2f %7.2f\n",tsync2,tsync2/ttotal);
 | 
						|
    fprintf(ftimer,"Stack/Fano decoder %7.2f %7.2f\n",tfano,tfano/ttotal);
 | 
						|
    fprintf(ftimer,"OSD        decoder %7.2f %7.2f\n",tosd,tosd/ttotal);
 | 
						|
    fprintf(ftimer,"-----------------------------------\n");
 | 
						|
    fprintf(ftimer,"Total              %7.2f %7.2f\n",ttotal,1.0);
 | 
						|
    
 | 
						|
    fclose(fall_wspr);
 | 
						|
    fclose(fwsprd);
 | 
						|
    //  fclose(fdiag);
 | 
						|
    fclose(ftimer);
 | 
						|
    fftwf_destroy_plan(PLAN1);
 | 
						|
    fftwf_destroy_plan(PLAN2);
 | 
						|
    fftwf_destroy_plan(PLAN3);
 | 
						|
    
 | 
						|
    if( usehashtable ) {
 | 
						|
        fhash=fopen(hash_fname,"w");
 | 
						|
        for (i=0; i<32768; i++) {
 | 
						|
            if( strncmp(hashtab+i*13,"\0",1) != 0 ) {
 | 
						|
                fprintf(fhash,"%5d %s %s\n",i,hashtab+i*13,loctab+i*5);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        fclose(fhash);
 | 
						|
    }
 | 
						|
    
 | 
						|
    free(hashtab);
 | 
						|
    free(loctab);
 | 
						|
    free(symbols);
 | 
						|
    free(decdata);
 | 
						|
    free(channel_symbols);
 | 
						|
    free(callsign);
 | 
						|
    free(call_loc_pow);
 | 
						|
    free(idat);
 | 
						|
    free(qdat);
 | 
						|
    free(stack);
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
}
 |