mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-28 11:30:25 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			179 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // neg_binomial_confidence_limits.cpp
 | |
| 
 | |
| // Copyright John Maddock 2006
 | |
| // Copyright Paul A. Bristow 2007, 2010
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Caution: this file contains quickbook markup as well as code
 | |
| // and comments, don't change any of the special comment markups!
 | |
| 
 | |
| //[neg_binomial_confidence_limits
 | |
| 
 | |
| /*`
 | |
| 
 | |
| First we need some includes to access the negative binomial distribution
 | |
| (and some basic std output of course).
 | |
| 
 | |
| */
 | |
| 
 | |
| #include <boost/math/distributions/negative_binomial.hpp>
 | |
| using boost::math::negative_binomial;
 | |
| 
 | |
| #include <iostream>
 | |
| using std::cout; using std::endl;
 | |
| #include <iomanip>
 | |
| using std::setprecision;
 | |
| using std::setw; using std::left; using std::fixed; using std::right;
 | |
| 
 | |
| /*`
 | |
| First define a table of significance levels: these are the 
 | |
| probabilities that the true occurrence frequency lies outside the calculated
 | |
| interval:
 | |
| */
 | |
| 
 | |
|   double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
 | |
| 
 | |
| /*`
 | |
| Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence
 | |
| that the true occurrence frequency lies *inside* the calculated interval.
 | |
| 
 | |
| We need a function to calculate and print confidence limits
 | |
| for an observed frequency of occurrence 
 | |
| that follows a negative binomial distribution.
 | |
| 
 | |
| */
 | |
| 
 | |
| void confidence_limits_on_frequency(unsigned trials, unsigned successes)
 | |
| {
 | |
|    // trials = Total number of trials.
 | |
|    // successes = Total number of observed successes.
 | |
|    // failures = trials - successes.
 | |
|    // success_fraction = successes /trials.
 | |
|    // Print out general info:
 | |
|    cout <<
 | |
|       "______________________________________________\n"
 | |
|       "2-Sided Confidence Limits For Success Fraction\n"
 | |
|       "______________________________________________\n\n";
 | |
|    cout << setprecision(7);
 | |
|    cout << setw(40) << left << "Number of trials" << " =  " << trials << "\n";
 | |
|    cout << setw(40) << left << "Number of successes" << " =  " << successes << "\n";
 | |
|    cout << setw(40) << left << "Number of failures" << " =  " << trials - successes << "\n";
 | |
|    cout << setw(40) << left << "Observed frequency of occurrence" << " =  " << double(successes) / trials << "\n";
 | |
| 
 | |
|    // Print table header:
 | |
|    cout << "\n\n"
 | |
|            "___________________________________________\n"
 | |
|            "Confidence        Lower          Upper\n"
 | |
|            " Value (%)        Limit          Limit\n"
 | |
|            "___________________________________________\n";
 | |
| 
 | |
| 
 | |
| /*`
 | |
| And now for the important part - the bounds themselves.
 | |
| For each value of /alpha/, we call `find_lower_bound_on_p` and 
 | |
| `find_upper_bound_on_p` to obtain lower and upper bounds respectively. 
 | |
| Note that since we are calculating a two-sided interval,
 | |
| we must divide the value of alpha in two.  Had we been calculating a 
 | |
| single-sided interval, for example: ['"Calculate a lower bound so that we are P%
 | |
| sure that the true occurrence frequency is greater than some value"]
 | |
| then we would *not* have divided by two.
 | |
| */
 | |
| 
 | |
|    // Now print out the upper and lower limits for the alpha table values.
 | |
|    for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
 | |
|    {
 | |
|       // Confidence value:
 | |
|       cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
 | |
|       // Calculate bounds:
 | |
|       double lower = negative_binomial::find_lower_bound_on_p(trials, successes, alpha[i]/2);
 | |
|       double upper = negative_binomial::find_upper_bound_on_p(trials, successes, alpha[i]/2);
 | |
|       // Print limits:
 | |
|       cout << fixed << setprecision(5) << setw(15) << right << lower;
 | |
|       cout << fixed << setprecision(5) << setw(15) << right << upper << endl;
 | |
|    }
 | |
|    cout << endl;
 | |
| } // void confidence_limits_on_frequency(unsigned trials, unsigned successes)
 | |
| 
 | |
| /*`
 | |
| 
 | |
| And then call confidence_limits_on_frequency with increasing numbers of trials,
 | |
| but always the same success fraction 0.1, or 1 in 10.
 | |
| 
 | |
| */
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   confidence_limits_on_frequency(20, 2); // 20 trials, 2 successes, 2 in 20, = 1 in 10 = 0.1 success fraction.
 | |
|   confidence_limits_on_frequency(200, 20); // More trials, but same 0.1 success fraction.
 | |
|   confidence_limits_on_frequency(2000, 200); // Many more trials, but same 0.1 success fraction.
 | |
| 
 | |
|   return 0;
 | |
| } // int main()
 | |
| 
 | |
| //] [/negative_binomial_confidence_limits_eg end of Quickbook in C++ markup]
 | |
| 
 | |
| /*
 | |
| 
 | |
| ______________________________________________
 | |
| 2-Sided Confidence Limits For Success Fraction
 | |
| ______________________________________________
 | |
| Number of trials                         =  20
 | |
| Number of successes                      =  2
 | |
| Number of failures                       =  18
 | |
| Observed frequency of occurrence         =  0.1
 | |
| ___________________________________________
 | |
| Confidence        Lower          Upper
 | |
|  Value (%)        Limit          Limit
 | |
| ___________________________________________
 | |
|     50.000        0.04812        0.13554
 | |
|     75.000        0.03078        0.17727
 | |
|     90.000        0.01807        0.22637
 | |
|     95.000        0.01235        0.26028
 | |
|     99.000        0.00530        0.33111
 | |
|     99.900        0.00164        0.41802
 | |
|     99.990        0.00051        0.49202
 | |
|     99.999        0.00016        0.55574
 | |
| ______________________________________________
 | |
| 2-Sided Confidence Limits For Success Fraction
 | |
| ______________________________________________
 | |
| Number of trials                         =  200
 | |
| Number of successes                      =  20
 | |
| Number of failures                       =  180
 | |
| Observed frequency of occurrence         =  0.1000000
 | |
| ___________________________________________
 | |
| Confidence        Lower          Upper
 | |
|  Value (%)        Limit          Limit
 | |
| ___________________________________________
 | |
|     50.000        0.08462        0.11350
 | |
|     75.000        0.07580        0.12469
 | |
|     90.000        0.06726        0.13695
 | |
|     95.000        0.06216        0.14508
 | |
|     99.000        0.05293        0.16170
 | |
|     99.900        0.04343        0.18212
 | |
|     99.990        0.03641        0.20017
 | |
|     99.999        0.03095        0.21664
 | |
| ______________________________________________
 | |
| 2-Sided Confidence Limits For Success Fraction
 | |
| ______________________________________________
 | |
| Number of trials                         =  2000
 | |
| Number of successes                      =  200
 | |
| Number of failures                       =  1800
 | |
| Observed frequency of occurrence         =  0.1000000
 | |
| ___________________________________________
 | |
| Confidence        Lower          Upper
 | |
|  Value (%)        Limit          Limit
 | |
| ___________________________________________
 | |
|     50.000        0.09536        0.10445
 | |
|     75.000        0.09228        0.10776
 | |
|     90.000        0.08916        0.11125
 | |
|     95.000        0.08720        0.11352
 | |
|     99.000        0.08344        0.11802
 | |
|     99.900        0.07921        0.12336
 | |
|     99.990        0.07577        0.12795
 | |
|     99.999        0.07282        0.13206
 | |
| */
 | |
| 
 |