mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 13:30:52 -05:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6592 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			269 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Reed-Solomon decoder
 | 
						|
 * Copyright 2002 Phil Karn, KA9Q
 | 
						|
 * May be used under the terms of the GNU General Public License (GPL)
 | 
						|
 * Modified by Steve Franke, K9AN, for use in a soft-symbol RS decoder
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#include <stdio.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#define	min(a,b)	((a) < (b) ? (a) : (b))
 | 
						|
 | 
						|
#ifdef FIXED
 | 
						|
#include "fixed.h"
 | 
						|
#elif defined(BIGSYM)
 | 
						|
#include "int.h"
 | 
						|
#else
 | 
						|
#include "char.h"
 | 
						|
#endif
 | 
						|
 | 
						|
int DECODE_RS(
 | 
						|
#ifndef FIXED
 | 
						|
              void *p,
 | 
						|
#endif
 | 
						|
              DTYPE *data, int *eras_pos, int no_eras, int calc_syn){
 | 
						|
    
 | 
						|
#ifndef FIXED
 | 
						|
    struct rs *rs = (struct rs *)p;
 | 
						|
#endif
 | 
						|
    int deg_lambda, el, deg_omega;
 | 
						|
    int i, j, r,k;
 | 
						|
    DTYPE u,q,tmp,num1,num2,den,discr_r;
 | 
						|
    DTYPE lambda[NROOTS+1];	// Err+Eras Locator poly
 | 
						|
    static DTYPE s[51];					 // and syndrome poly
 | 
						|
    DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
 | 
						|
    DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS];
 | 
						|
    int syn_error, count;
 | 
						|
    
 | 
						|
    if( calc_syn ) {
 | 
						|
        /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
 | 
						|
        for(i=0;i<NROOTS;i++)
 | 
						|
            s[i] = data[0];
 | 
						|
        
 | 
						|
        for(j=1;j<NN;j++){
 | 
						|
            for(i=0;i<NROOTS;i++){
 | 
						|
                if(s[i] == 0){
 | 
						|
                    s[i] = data[j];
 | 
						|
                } else {
 | 
						|
                    s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        /* Convert syndromes to index form, checking for nonzero condition */
 | 
						|
        syn_error = 0;
 | 
						|
        for(i=0;i<NROOTS;i++){
 | 
						|
            syn_error |= s[i];
 | 
						|
            s[i] = INDEX_OF[s[i]];
 | 
						|
        }
 | 
						|
        
 | 
						|
        
 | 
						|
        if (!syn_error) {
 | 
						|
            /* if syndrome is zero, data[] is a codeword and there are no
 | 
						|
             * errors to correct. So return data[] unmodified
 | 
						|
             */
 | 
						|
            count = 0;
 | 
						|
            goto finish;
 | 
						|
        }
 | 
						|
        
 | 
						|
    }
 | 
						|
    
 | 
						|
    memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
 | 
						|
    lambda[0] = 1;
 | 
						|
    
 | 
						|
    if (no_eras > 0) {
 | 
						|
        /* Init lambda to be the erasure locator polynomial */
 | 
						|
        lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
 | 
						|
        for (i = 1; i < no_eras; i++) {
 | 
						|
            u = MODNN(PRIM*(NN-1-eras_pos[i]));
 | 
						|
            for (j = i+1; j > 0; j--) {
 | 
						|
                tmp = INDEX_OF[lambda[j - 1]];
 | 
						|
                if(tmp != A0)
 | 
						|
                    lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
#if DEBUG >= 1
 | 
						|
        /* Test code that verifies the erasure locator polynomial just constructed
 | 
						|
         Needed only for decoder debugging. */
 | 
						|
        
 | 
						|
        /* find roots of the erasure location polynomial */
 | 
						|
        for(i=1;i<=no_eras;i++)
 | 
						|
            reg[i] = INDEX_OF[lambda[i]];
 | 
						|
        
 | 
						|
        count = 0;
 | 
						|
        for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | 
						|
            q = 1;
 | 
						|
            for (j = 1; j <= no_eras; j++)
 | 
						|
                if (reg[j] != A0) {
 | 
						|
                    reg[j] = MODNN(reg[j] + j);
 | 
						|
                    q ^= ALPHA_TO[reg[j]];
 | 
						|
                }
 | 
						|
            if (q != 0)
 | 
						|
                continue;
 | 
						|
            /* store root and error location number indices */
 | 
						|
            root[count] = i;
 | 
						|
            loc[count] = k;
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        if (count != no_eras) {
 | 
						|
            printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
 | 
						|
            count = -1;
 | 
						|
            goto finish;
 | 
						|
        }
 | 
						|
#if DEBUG >= 2
 | 
						|
        printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
 | 
						|
        for (i = 0; i < count; i++)
 | 
						|
            printf("%d ", loc[i]);
 | 
						|
        printf("\n");
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    for(i=0;i<NROOTS+1;i++)
 | 
						|
        b[i] = INDEX_OF[lambda[i]];
 | 
						|
    
 | 
						|
    /*
 | 
						|
     * Begin Berlekamp-Massey algorithm to determine error+erasure
 | 
						|
     * locator polynomial
 | 
						|
     */
 | 
						|
    r = no_eras;
 | 
						|
    el = no_eras;
 | 
						|
    while (++r <= NROOTS) {	/* r is the step number */
 | 
						|
        /* Compute discrepancy at the r-th step in poly-form */
 | 
						|
        discr_r = 0;
 | 
						|
        for (i = 0; i < r; i++){
 | 
						|
            if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
 | 
						|
                discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        discr_r = INDEX_OF[discr_r];	/* Index form */
 | 
						|
        if (discr_r == A0) {
 | 
						|
            /* 2 lines below: B(x) <-- x*B(x) */
 | 
						|
            memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | 
						|
            b[0] = A0;
 | 
						|
        } else {
 | 
						|
            /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
 | 
						|
            t[0] = lambda[0];
 | 
						|
            for (i = 0 ; i < NROOTS; i++) {
 | 
						|
                if(b[i] != A0)
 | 
						|
                    t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
 | 
						|
                else
 | 
						|
                    t[i+1] = lambda[i+1];
 | 
						|
            }
 | 
						|
            if (2 * el <= r + no_eras - 1) {
 | 
						|
                el = r + no_eras - el;
 | 
						|
                /*
 | 
						|
                 * 2 lines below: B(x) <-- inv(discr_r) *
 | 
						|
                 * lambda(x)
 | 
						|
                 */
 | 
						|
                for (i = 0; i <= NROOTS; i++)
 | 
						|
                    b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
 | 
						|
            } else {
 | 
						|
                /* 2 lines below: B(x) <-- x*B(x) */
 | 
						|
                memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | 
						|
                b[0] = A0;
 | 
						|
            }
 | 
						|
            memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* Convert lambda to index form and compute deg(lambda(x)) */
 | 
						|
    deg_lambda = 0;
 | 
						|
    for(i=0;i<NROOTS+1;i++){
 | 
						|
        lambda[i] = INDEX_OF[lambda[i]];
 | 
						|
        if(lambda[i] != A0)
 | 
						|
            deg_lambda = i;
 | 
						|
    }
 | 
						|
    /* Find roots of the error+erasure locator polynomial by Chien search */
 | 
						|
    memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
 | 
						|
    count = 0;		/* Number of roots of lambda(x) */
 | 
						|
    for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | 
						|
        q = 1; /* lambda[0] is always 0 */
 | 
						|
        for (j = deg_lambda; j > 0; j--){
 | 
						|
            if (reg[j] != A0) {
 | 
						|
                reg[j] = MODNN(reg[j] + j);
 | 
						|
                q ^= ALPHA_TO[reg[j]];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (q != 0)
 | 
						|
            continue; /* Not a root */
 | 
						|
        /* store root (index-form) and error location number */
 | 
						|
#if DEBUG>=2
 | 
						|
        printf("count %d root %d loc %d\n",count,i,k);
 | 
						|
#endif
 | 
						|
        root[count] = i;
 | 
						|
        loc[count] = k;
 | 
						|
        /* If we've already found max possible roots,
 | 
						|
         * abort the search to save time
 | 
						|
         */
 | 
						|
        if(++count == deg_lambda)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (deg_lambda != count) {
 | 
						|
        /*
 | 
						|
         * deg(lambda) unequal to number of roots => uncorrectable
 | 
						|
         * error detected
 | 
						|
         */
 | 
						|
        count = -1;
 | 
						|
        goto finish;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
 | 
						|
     * x**NROOTS). in index form. Also find deg(omega).
 | 
						|
     */
 | 
						|
    deg_omega = 0;
 | 
						|
    for (i = 0; i < NROOTS;i++){
 | 
						|
        tmp = 0;
 | 
						|
        j = (deg_lambda < i) ? deg_lambda : i;
 | 
						|
        for(;j >= 0; j--){
 | 
						|
            if ((s[i - j] != A0) && (lambda[j] != A0))
 | 
						|
                tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
 | 
						|
        }
 | 
						|
        if(tmp != 0)
 | 
						|
            deg_omega = i;
 | 
						|
        omega[i] = INDEX_OF[tmp];
 | 
						|
    }
 | 
						|
    omega[NROOTS] = A0;
 | 
						|
    
 | 
						|
    /*
 | 
						|
     * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
 | 
						|
     * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
 | 
						|
     */
 | 
						|
    for (j = count-1; j >=0; j--) {
 | 
						|
        num1 = 0;
 | 
						|
        for (i = deg_omega; i >= 0; i--) {
 | 
						|
            if (omega[i] != A0)
 | 
						|
                num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
 | 
						|
        }
 | 
						|
        num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
 | 
						|
        den = 0;
 | 
						|
        
 | 
						|
        /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
 | 
						|
        for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
 | 
						|
            if(lambda[i+1] != A0)
 | 
						|
                den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
 | 
						|
        }
 | 
						|
        if (den == 0) {
 | 
						|
#if DEBUG >= 1
 | 
						|
            printf("\n ERROR: denominator = 0\n");
 | 
						|
#endif
 | 
						|
            count = -1;
 | 
						|
            goto finish;
 | 
						|
        }
 | 
						|
        /* Apply error to data */
 | 
						|
        if (num1 != 0) {
 | 
						|
            data[loc[j]] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
 | 
						|
        }
 | 
						|
    }
 | 
						|
finish:
 | 
						|
    if(eras_pos != NULL){
 | 
						|
        for(i=0;i<count;i++)
 | 
						|
            eras_pos[i] = loc[i];
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 |