mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			208 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  Copyright Paul A. Bristow 2013.
 | |
| //  Copyright Nakhar Agrawal 2013.
 | |
| //  Copyright John Maddock 2013.
 | |
| //  Copyright Christopher Kormanyos 2013.
 | |
| 
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #pragma warning (disable : 4100) // unreferenced formal parameter.
 | |
| #pragma warning (disable : 4127) // conditional expression is constant.
 | |
| 
 | |
| //#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | |
| 
 | |
| #include <boost/multiprecision/cpp_dec_float.hpp>
 | |
| #include <boost/math/special_functions/bernoulli.hpp>
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| /* First 50 from 2 to 100 inclusive: */
 | |
| /* TABLE[N[BernoulliB[n], 200], {n,2,100,2}] */
 | |
| 
 | |
| //SC_(0.1666666666666666666666666666666666666666), 
 | |
| //SC_(-0.0333333333333333333333333333333333333333), 
 | |
| //SC_(0.0238095238095238095238095238095238095238), 
 | |
| //SC_(-0.0333333333333333333333333333333333333333), 
 | |
| //SC_(0.0757575757575757575757575757575757575757), 
 | |
| //SC_(-0.2531135531135531135531135531135531135531), 
 | |
| //SC_(1.1666666666666666666666666666666666666666), 
 | |
| //SC_(-7.0921568627450980392156862745098039215686), 
 | |
| //SC_(54.9711779448621553884711779448621553884711), 
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   //[bernoulli_example_1
 | |
| 
 | |
| /*`A simple example computes the value of B[sub 4] where the return type is `double`,
 | |
| note that the argument to bernoulli_b2n is ['2] not ['4] since it computes B[sub 2N].
 | |
| 
 | |
| 
 | |
| */ 
 | |
|   try
 | |
|   { // It is always wise to use try'n'catch blocks around Boost.Math functions
 | |
|     // so that any informative error messages can be displayed in the catch block.
 | |
|   std::cout
 | |
|     << std::setprecision(std::numeric_limits<double>::digits10)
 | |
|     << boost::math::bernoulli_b2n<double>(2) << std::endl;
 | |
| 
 | |
| /*`So B[sub 4] == -1/30 == -0.0333333333333333 
 | |
| 
 | |
| If we use Boost.Multiprecision and its 50 decimal digit floating-point type `cpp_dec_float_50`,
 | |
| we can calculate the value of much larger numbers like B[sub 200]
 | |
| and also obtain much higher precision.
 | |
| */
 | |
| 
 | |
|   std::cout
 | |
|     << std::setprecision(std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10)
 | |
|     << boost::math::bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>(100) << std::endl;
 | |
|  
 | |
| //] //[/bernoulli_example_1]
 | |
| 
 | |
| //[bernoulli_example_2
 | |
| /*`We can compute and save all the float-precision Bernoulli numbers from one call.
 | |
| */
 | |
|   std::vector<float> bn; // Space for 32-bit `float` precision Bernoulli numbers.
 | |
| 
 | |
|   // Start with Bernoulli number 0.
 | |
|   boost::math::bernoulli_b2n<float>(0, 32, std::back_inserter(bn)); // Fill vector with even Bernoulli numbers.
 | |
| 
 | |
|   for(size_t i = 0; i < bn.size(); i++)
 | |
|   { // Show vector of even Bernoulli numbers, showing all significant decimal digits.
 | |
|       std::cout << std::setprecision(std::numeric_limits<float>::digits10)
 | |
|           << i*2 << ' '           
 | |
|           << bn[i]
 | |
|           << std::endl;
 | |
|   }
 | |
| //] //[/bernoulli_example_2]
 | |
| 
 | |
|   }
 | |
|   catch(const std::exception& ex)
 | |
|   {
 | |
|      std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
| 
 | |
| //[bernoulli_example_3    
 | |
| /*`Of course, for any floating-point type, there is a maximum Bernoulli number that can be computed
 | |
|   before it overflows the exponent.
 | |
|   By default policy, if we try to compute too high a Bernoulli number, an exception will be thrown.
 | |
| */
 | |
|   try
 | |
|   {
 | |
|     std::cout
 | |
|     << std::setprecision(std::numeric_limits<float>::digits10)
 | |
|     << "Bernoulli number " << 33 * 2 <<std::endl;
 | |
| 
 | |
|     std::cout << boost::math::bernoulli_b2n<float>(33) << std::endl;
 | |
|   }
 | |
|   catch (std::exception ex)
 | |
|   {
 | |
|     std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
| /*`
 | |
| and we will get a helpful error message (provided try'n'catch blocks are used).
 | |
| */
 | |
| 
 | |
| //] //[/bernoulli_example_3]
 | |
| 
 | |
| //[bernoulli_example_4
 | |
| /*For example:
 | |
| */
 | |
|    std::cout << "boost::math::max_bernoulli_b2n<float>::value = "  << boost::math::max_bernoulli_b2n<float>::value << std::endl;
 | |
|    std::cout << "Maximum Bernoulli number using float is " << boost::math::bernoulli_b2n<float>( boost::math::max_bernoulli_b2n<float>::value) << std::endl;
 | |
|    std::cout << "boost::math::max_bernoulli_b2n<double>::value = "  << boost::math::max_bernoulli_b2n<double>::value << std::endl;
 | |
|    std::cout << "Maximum Bernoulli number using double is " << boost::math::bernoulli_b2n<double>( boost::math::max_bernoulli_b2n<double>::value) << std::endl;
 | |
|   //] //[/bernoulli_example_4]
 | |
| 
 | |
| //[tangent_example_1
 | |
| 
 | |
| /*`We can compute and save a few Tangent numbers.
 | |
| */
 | |
|   std::vector<float> tn; // Space for some `float` precision Tangent numbers.
 | |
| 
 | |
|   // Start with Bernoulli number 0.
 | |
|   boost::math::tangent_t2n<float>(1, 6, std::back_inserter(tn)); // Fill vector with even Tangent numbers.
 | |
| 
 | |
|   for(size_t i = 0; i < tn.size(); i++)
 | |
|   { // Show vector of even Tangent numbers, showing all significant decimal digits.
 | |
|       std::cout << std::setprecision(std::numeric_limits<float>::digits10)
 | |
|           << " "
 | |
|           << tn[i];
 | |
|   }
 | |
|   std::cout << std::endl;
 | |
| 
 | |
| //] [/tangent_example_1]
 | |
| 
 | |
| // 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312 
 | |
| 
 | |
| 
 | |
| 
 | |
| } // int main()
 | |
| 
 | |
| /*
 | |
| 
 | |
| //[bernoulli_output_1
 | |
|   -3.6470772645191354362138308865549944904868234686191e+215
 | |
| //] //[/bernoulli_output_1]
 | |
| 
 | |
| //[bernoulli_output_2
 | |
| 
 | |
|   0 1
 | |
|   2 0.166667
 | |
|   4 -0.0333333
 | |
|   6 0.0238095
 | |
|   8 -0.0333333
 | |
|   10 0.0757576
 | |
|   12 -0.253114
 | |
|   14 1.16667
 | |
|   16 -7.09216
 | |
|   18 54.9712
 | |
|   20 -529.124
 | |
|   22 6192.12
 | |
|   24 -86580.3
 | |
|   26 1.42552e+006
 | |
|   28 -2.72982e+007
 | |
|   30 6.01581e+008
 | |
|   32 -1.51163e+010
 | |
|   34 4.29615e+011
 | |
|   36 -1.37117e+013
 | |
|   38 4.88332e+014
 | |
|   40 -1.92966e+016
 | |
|   42 8.41693e+017
 | |
|   44 -4.03381e+019
 | |
|   46 2.11507e+021
 | |
|   48 -1.20866e+023
 | |
|   50 7.50087e+024
 | |
|   52 -5.03878e+026
 | |
|   54 3.65288e+028
 | |
|   56 -2.84988e+030
 | |
|   58 2.38654e+032
 | |
|   60 -2.14e+034
 | |
|   62 2.0501e+036
 | |
| //] //[/bernoulli_output_2]
 | |
| 
 | |
| //[bernoulli_output_3
 | |
|  Bernoulli number 66
 | |
|  Thrown Exception caught: Error in function boost::math::bernoulli_b2n<float>(n):
 | |
|  Overflow evaluating function at 33
 | |
| //] //[/bernoulli_output_3]
 | |
| //[bernoulli_output_4
 | |
|   boost::math::max_bernoulli_b2n<float>::value = 32
 | |
|   Maximum Bernoulli number using float is -2.0938e+038
 | |
|   boost::math::max_bernoulli_b2n<double>::value = 129
 | |
|   Maximum Bernoulli number using double is 1.33528e+306
 | |
| //] //[/bernoulli_output_4]
 | |
| 
 | |
|   
 | |
| //[tangent_output_1
 | |
|    1 2 16 272 7936 353792
 | |
| //] [/tangent_output_1]
 | |
| 
 | |
| 
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 |