mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 12:30:23 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			279 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // distribution_construction.cpp
 | |
| 
 | |
| // Copyright Paul A. Bristow 2007, 2010, 2012.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Caution: this file contains Quickbook markup as well as code
 | |
| // and comments, don't change any of the special comment markups!
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4996) // disable -D_SCL_SECURE_NO_WARNINGS C++ 'Checked Iterators'
 | |
| #endif
 | |
| 
 | |
| #include <iostream>
 | |
| #include <exception>
 | |
| 
 | |
| //[distribution_construction_1
 | |
| 
 | |
| /*`
 | |
| The structure of distributions is rather different from some other statistical libraries,
 | |
| for example, those written in less object-oriented language like FORTRAN and C:
 | |
| these provide a few arguments to each free function.
 | |
| 
 | |
| Boost.Math library provides each distribution as a template C++ class.
 | |
| A distribution is constructed with a few arguments, and then
 | |
| member and non-member functions are used to find values of the
 | |
| distribution, often a function of a random variate.
 | |
| 
 | |
| For this demonstration, first we need some includes to access the
 | |
| negative binomial distribution (and the binomial, beta and gamma distributions too).
 | |
| 
 | |
| To demonstrate the use with a high precision User-defined floating-point type
 | |
| `cpp_dec_float` we also need an include from Boost.Multiprecision.
 | |
| */
 | |
| 
 | |
| #include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
 | |
|   using boost::math::negative_binomial_distribution; // default type is double.
 | |
|   using boost::math::negative_binomial; // typedef provides default type is double.
 | |
| #include <boost/math/distributions/binomial.hpp> // for binomial_distribution.
 | |
| #include <boost/math/distributions/beta.hpp> // for beta_distribution.
 | |
| #include <boost/math/distributions/gamma.hpp> // for gamma_distribution.
 | |
| #include <boost/math/distributions/normal.hpp> // for normal_distribution.
 | |
| 
 | |
| #include <boost/multiprecision/cpp_dec_float.hpp> // for cpp_dec_float_100
 | |
| /*`
 | |
| Several examples of constructing distributions follow:
 | |
| */
 | |
| //] [/distribution_construction_1 end of Quickbook in C++ markup]
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   try
 | |
|   {
 | |
| //[distribution_construction_2
 | |
| /*`
 | |
| First, a negative binomial distribution with 8 successes
 | |
| and a success fraction 0.25, 25% or 1 in 4, is constructed like this:
 | |
| */
 | |
|   boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);
 | |
|   /*`
 | |
|   But this is inconveniently long, so we might be tempted to write
 | |
|   */
 | |
|   using namespace boost::math;
 | |
|   /*`
 | |
|   but this might risk ambiguity with names in `std random` so
 | |
|   [*much] better is explicit `using boost::math::` statements, for example:
 | |
|   */
 | |
|   using boost::math::negative_binomial_distribution;
 | |
|   /*`
 | |
|   and we can still reduce typing.
 | |
| 
 | |
|   Since the vast majority of applications use will be using `double` precision,
 | |
|   the template argument to the distribution (`RealType`) defaults
 | |
|   to type `double`, so we can also write:
 | |
|   */
 | |
| 
 | |
|   negative_binomial_distribution<> mydist9(8., 0.25); // Uses default `RealType = double`.
 | |
| 
 | |
|   /*`
 | |
|   But the name `negative_binomial_distribution` is still inconveniently long,
 | |
|   so, for most distributions, a convenience `typedef` is provided, for example:
 | |
| 
 | |
|      typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
 | |
| 
 | |
|   [caution
 | |
|   This convenience typedef is [*not provided] if a clash would occur
 | |
|   with the name of a function: currently only `beta` and `gamma`
 | |
|   fall into this category.
 | |
|   ]
 | |
| 
 | |
|   So, after a using statement,
 | |
|   */
 | |
| 
 | |
|   using boost::math::negative_binomial;
 | |
| 
 | |
|   /*`
 | |
|   we have a convenient typedef to `negative_binomial_distribution<double>`:
 | |
|   */
 | |
|   negative_binomial mydist(8., 0.25);
 | |
| 
 | |
|   /*`
 | |
|   Some more examples using the convenience typedef:
 | |
|   */
 | |
|   negative_binomial mydist10(5., 0.4); // Both arguments double.
 | |
|   /*`
 | |
|   And automatic conversion takes place, so you can use integers and floats:
 | |
|   */
 | |
|   negative_binomial mydist11(5, 0.4); // Using provided typedef double, int and double arguments.
 | |
|   /*`
 | |
|   This is probably the most common usage.
 | |
|   */
 | |
|   negative_binomial mydist12(5., 0.4F); // Double and float arguments.
 | |
|   negative_binomial mydist13(5, 1); // Both arguments integer.
 | |
| 
 | |
|   /*`
 | |
|   Similarly for most other distributions like the binomial.
 | |
|   */
 | |
|   binomial mybinomial(1, 0.5); // is more concise than
 | |
|   binomial_distribution<> mybinomd1(1, 0.5);
 | |
| 
 | |
|   /*`
 | |
|   For cases when the typdef distribution name would clash with a math special function
 | |
|   (currently only beta and gamma)
 | |
|   the typedef is deliberately not provided, and the longer version of the name
 | |
|   must be used.  For example do not use:
 | |
| 
 | |
|      using boost::math::beta;
 | |
|      beta mybetad0(1, 0.5); // Error beta is a math FUNCTION!
 | |
| 
 | |
|   Which produces the error messages:
 | |
| 
 | |
|   [pre
 | |
|   error C2146: syntax error : missing ';' before identifier 'mybetad0'
 | |
|   warning C4551: function call missing argument list
 | |
|   error C3861: 'mybetad0': identifier not found
 | |
|   ]
 | |
| 
 | |
|   Instead you should use:
 | |
|   */
 | |
|   using boost::math::beta_distribution;
 | |
|   beta_distribution<> mybetad1(1, 0.5);
 | |
|   /*`
 | |
|   or for the gamma distribution:
 | |
|   */
 | |
|   gamma_distribution<> mygammad1(1, 0.5);
 | |
| 
 | |
|   /*`
 | |
|   We can, of course, still provide the type explicitly thus:
 | |
|   */
 | |
| 
 | |
|   // Explicit double precision:  both arguments are double:
 | |
|   negative_binomial_distribution<double>        mydist1(8., 0.25);
 | |
| 
 | |
|   // Explicit float precision, double arguments are truncated to float:
 | |
|   negative_binomial_distribution<float>         mydist2(8., 0.25);
 | |
| 
 | |
|   // Explicit float precision, integer & double arguments converted to float:
 | |
|   negative_binomial_distribution<float>         mydist3(8, 0.25);
 | |
| 
 | |
|   // Explicit float precision, float arguments, so no conversion:
 | |
|   negative_binomial_distribution<float>         mydist4(8.F, 0.25F);
 | |
| 
 | |
|   // Explicit float precision, integer arguments promoted to float.
 | |
|   negative_binomial_distribution<float>         mydist5(8, 1);
 | |
| 
 | |
|   // Explicit double precision:
 | |
|   negative_binomial_distribution<double>        mydist6(8., 0.25);
 | |
| 
 | |
|   // Explicit long double precision:
 | |
|   negative_binomial_distribution<long double>   mydist7(8., 0.25);
 | |
| 
 | |
|   /*`
 | |
|   And you can use your own RealType,
 | |
|   for example, `boost::math::cpp_dec_float_50` (an arbitrary 50 decimal digits precision type),
 | |
|   then we can write:
 | |
|   */
 | |
|   using namespace boost::multiprecision;
 | |
| 
 | |
|   negative_binomial_distribution<cpp_dec_float_50>  mydist8(8, 0.25);
 | |
|   // `integer` arguments are promoted to your RealType exactly, but
 | |
|   // `double` argument are converted to RealType,
 | |
|   // possibly losing precision, so don't write:
 | |
| 
 | |
|   negative_binomial_distribution<cpp_dec_float_50>  mydist20(8, 0.23456789012345678901234567890);
 | |
|  // to avoid truncation of second parameter to `0.2345678901234567`.
 | |
| 
 | |
|   negative_binomial_distribution<cpp_dec_float_50>  mydist21(8, cpp_dec_float_50("0.23456789012345678901234567890") );
 | |
| 
 | |
|   // Ensure that all potentially significant digits are shown.
 | |
|   std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
 | |
|   cpp_dec_float_50 x("1.23456789012345678901234567890");
 | |
|   std::cout << pdf(mydist8, x) << std::endl;
 | |
| /*` showing  0.00012630010495970320103876754721976419438231705359935
 | |
| 
 | |
| [warning When using multiprecision, it is all too easy to get accidental truncation!]
 | |
| 
 | |
| For example, if you write
 | |
| */
 | |
|   std::cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl;
 | |
| /*`
 | |
| showing  0.00012630010495970318465064569310967179576805651692929,
 | |
| which is wrong at about the 17th decimal digit!
 | |
| 
 | |
| This is because the value provided is truncated to a `double`, effectively
 | |
|   `double x = 1.23456789012345678901234567890;`
 | |
| 
 | |
| Then the now `double x` is passed to function `pdf`,
 | |
| and this truncated `double` value is finally promoted to `cpp_dec_float_50`.
 | |
| 
 | |
| Another way of quietly getting the wrong answer is to write:
 | |
| */
 | |
|   std::cout << pdf(mydist8, cpp_dec_float_50(1.23456789012345678901234567890)) << std::endl;
 | |
| /*`
 | |
| A correct way from a multi-digit string value is
 | |
| */
 | |
|   std::cout << pdf(mydist8, cpp_dec_float_50("1.23456789012345678901234567890")) << std::endl;
 | |
| /*`
 | |
| 
 | |
| [tip Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.]
 | |
| */
 | |
| 
 | |
| /*`
 | |
| [h4 Default arguments to distribution constructors.]
 | |
| 
 | |
| Note that default constructor arguments are only provided for some distributions.
 | |
| So if you wrongly assume a default argument, you will get an error message, for example:
 | |
| 
 | |
|    negative_binomial_distribution<> mydist8;
 | |
| 
 | |
| [pre error C2512 no appropriate default constructor available.]
 | |
| 
 | |
| No default constructors are provided for the `negative binomial` distribution,
 | |
| because it is difficult to chose any sensible default values for this distribution.
 | |
| 
 | |
| For other distributions, like the normal distribution,
 | |
| it is obviously very useful to provide 'standard'
 | |
| defaults for the mean (zero) and standard deviation (unity) thus:
 | |
| 
 | |
|     normal_distribution(RealType mean = 0, RealType sd = 1);
 | |
| 
 | |
| So in this case we can write:
 | |
| */
 | |
|   using boost::math::normal;
 | |
| 
 | |
|   normal norm1;       // Standard normal distribution.
 | |
|   normal norm2(2);    // Mean = 2, std deviation = 1.
 | |
|   normal norm3(2, 3); // Mean = 2, std deviation = 3.
 | |
| 
 | |
|   }
 | |
|   catch(std::exception &ex)
 | |
|   {
 | |
|     std::cout << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }  // int main()
 | |
| 
 | |
| /*`There is no useful output from this demonstration program, of course. */
 | |
| 
 | |
| //] [/end of distribution_construction_2]
 | |
| 
 | |
| /*
 | |
| //[distribution_construction_output
 | |
| 
 | |
|   0.00012630010495970320103876754721976419438231705359935
 | |
|   0.00012630010495970318465064569310967179576805651692929
 | |
|   0.00012630010495970318465064569310967179576805651692929
 | |
|   0.00012630010495970320103876754721976419438231705359935
 | |
| 
 | |
| //] [/distribution_construction_output]
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 |