mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			101 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * bulirsch_stoer.cpp
 | |
|  *
 | |
|  * Copyright 2011-2013 Mario Mulansky
 | |
|  * Copyright 2011-2012 Karsten Ahnert
 | |
|  *
 | |
|  * Distributed under the Boost Software License, Version 1.0.
 | |
|  * (See accompanying file LICENSE_1_0.txt or
 | |
|  * copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #define _USE_MATH_DEFINES
 | |
| #include <cmath>
 | |
| 
 | |
| #include <boost/array.hpp>
 | |
| #include <boost/ref.hpp>
 | |
| 
 | |
| #include <boost/numeric/odeint/config.hpp>
 | |
| 
 | |
| #include <boost/numeric/odeint.hpp>
 | |
| #include <boost/numeric/odeint/stepper/bulirsch_stoer.hpp>
 | |
| #include <boost/numeric/odeint/stepper/bulirsch_stoer_dense_out.hpp>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace boost::numeric::odeint;
 | |
| 
 | |
| typedef boost::array< double , 1 > state_type;
 | |
| 
 | |
| /*
 | |
|  * x' = ( - x*sin t  + 2 tan x ) y
 | |
|  * with x( pi/6 ) = 2/sqrt(3) the analytic solution is 1/cos t
 | |
|  */
 | |
| 
 | |
| void rhs( const state_type &x , state_type &dxdt , const double t )
 | |
| {
 | |
|     dxdt[0] = ( - x[0] * sin( t ) + 2.0 * tan( t ) ) * x[0];
 | |
| }
 | |
| 
 | |
| void rhs2( const state_type &x , state_type &dxdt , const double t )
 | |
| {
 | |
|     dxdt[0] = sin(t);
 | |
| }
 | |
| 
 | |
| 
 | |
| ofstream out;
 | |
| 
 | |
| void write_out( const state_type &x , const double t )
 | |
| {
 | |
|     out << t << '\t' << x[0] << endl;
 | |
| }
 | |
| 
 | |
| int main()
 | |
| {
 | |
|     bulirsch_stoer_dense_out< state_type > stepper( 1E-8 , 0.0 , 0.0 , 0.0 );
 | |
|     bulirsch_stoer< state_type > stepper2( 1E-8 , 0.0 , 0.0 , 0.0 );
 | |
| 
 | |
|     state_type x = {{ 2.0 / sqrt(3.0) }};
 | |
| 
 | |
|     double t = M_PI/6.0;
 | |
|     //double t = 0.0;
 | |
|     double dt = 0.01;
 | |
|     double t_end = M_PI/2.0 - 0.1;
 | |
|     //double t_end = 100.0;
 | |
| 
 | |
|     out.open( "bs.dat" );
 | |
|     out.precision(16);
 | |
|     integrate_const( stepper , rhs , x , t , t_end , dt , write_out );
 | |
|     out.close();
 | |
| 
 | |
|     x[0] = 2.0 / sqrt(3.0);
 | |
| 
 | |
|     out.open( "bs2.dat" );
 | |
|     out.precision(16);
 | |
|     integrate_adaptive( stepper , rhs , x , t , t_end , dt , write_out );
 | |
|     out.close();
 | |
| 
 | |
|     x[0] = 2.0 / sqrt(3.0);
 | |
| 
 | |
|     out.open( "bs3.dat" );
 | |
|     out.precision(16);
 | |
|     integrate_adaptive( stepper2 , rhs , x , t , t_end , dt , write_out );
 | |
|     out.close();
 | |
| 
 | |
| 
 | |
|     typedef runge_kutta_dopri5< state_type > dopri5_type;
 | |
|     typedef controlled_runge_kutta< dopri5_type > controlled_dopri5_type;
 | |
|     typedef dense_output_runge_kutta< controlled_dopri5_type > dense_output_dopri5_type;
 | |
| 
 | |
|     dense_output_dopri5_type dopri5 = make_dense_output( 1E-9 , 1E-9 , dopri5_type() );
 | |
| 
 | |
|     x[0] = 2.0 / sqrt(3.0);
 | |
| 
 | |
|     out.open( "bs4.dat" );
 | |
|     out.precision(16);
 | |
|     integrate_adaptive( dopri5 , rhs , x , t , t_end , dt , write_out );
 | |
|     out.close();
 | |
| 
 | |
| }
 |